Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered ,,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!
Input
First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ ≤T≤.
⋅ ≤ex,ey≤.
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from  and y is the number of possible starting grids.
Sample Input

 
Sample Output
Case #:
Case #:
Case #:
 
Source

http://blog.csdn.net/queuelovestack/article/details/50094499  这个博客讲的很好,就直接复制了。

题意:有一只青蛙,它从起点(x,y)出发,每次它会走LCM(x,y)步[LCM(x,y)就是x,y的最小公倍数]到达点(x+LCM(x,y),y)或点(x,y+LCM(x,y)),最终,它会到达点(ex,ey),现给你终点(ex,ey),要你求出它的起点有多少种可能

解题思路:我们暂时假设x,y的最大公约数gcd(x,y)=k,那么我们不妨用来表示x,用来表示y,那么新得到的点必定是,因为x与y的最小公倍数

我们不妨求解一下新的点x和y的gcd值,以点为例

因为时互质的,也是互质的,故

所以,我们可以发现先得到的点和原来的点有相同的最大公约数,故我们可以利用这一点来根据终点求解原先的起点

还有一点需要提及的是,对于当前点(x,y),x,y中小的那个值必定是之前那个点中的x值或y值,故我们可以开始逆推了

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
using namespace std;
const int N = ;
const int M = ;
const int inf = ;
const int mod = ;
int gcd(int x,int y)
{
if(x%y)
return gcd(y,x%y);
return y;
}
int main()
{
int t,k,c,p=,x,y;
scanf("%d",&t);
while(t--)
{
c=;
scanf("%d%d",&x,&y);
if(x>y)
swap(x,y);
k=gcd(x,y);
while(y%(x+k)==)
{
c++;
y=y/(x/k+);
if(x>y)
swap(x,y);
k=gcd(x,y);
}
printf("Case #%d: %d\n",p++,c);
}
return ;
}

hdu 5584 LCM Walk(数学推导公式,规律)的更多相关文章

  1. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  2. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  3. HDU 5584 LCM Walk【搜索】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 分析: 这题比赛的时候卡了很久,一直在用数论的方法解决. 其实从终点往前推就可以发现, ...

  4. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

  5. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  6. HDU 5844 LCM Walk(数学逆推)

    http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 现在有坐标(x,y),设它们的最小公倍数为k,接下来可以移动到(x+k,y)或者(x,y+k).现 ...

  7. [HDOJ5584]LCM Walk(数论,规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...

  8. hdu 5312 Sequence(数学推导——三角形数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5312 Sequence Time Limit: 2000/2000 MS (Java/Others)  ...

  9. acdream.LCM Challenge(数学推导)

     LCM Challenge Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit ...

随机推荐

  1. ASP.net(C#)批量上传图片(完整版)

    摘自:http://www.biye5u.com/article/netsite/ASPNET/2010/1996.html   这篇关于ASP.Net批量上传图片的文章写得非常好,偶尔在网上看到想转 ...

  2. Windows下Node.js开发环境搭建

    1.http://nodejs.org/下载node.js运行环境安装 2.打开DOS命令行 .安装express框架 1 >npm install express 末尾显示如下为安装成功 .安 ...

  3. hdu 1050 Moving Tables_贪心

    题意:你搬n个桌子,桌子从一个地方搬到另一个地方,走廊只允许同时一个桌子通过,教室分布在两边,奇数在一边,偶数在一边,当桌子不冲突时可以同时搬运,冲突时要等别的那个桌子搬完再搬. 思路:因为奇数桌子在 ...

  4. redhat 安装virtualbox

    1.在官网下载virtual for linux 包,链接地址:https://www.virtualbox.org/wiki/Linux_Downloads.根据需要下载对应镜像. 2.由于下载的包 ...

  5. 1 & 167. Two Sum I & II ( Input array is sorted )

    Input array is sorted: Use binary search or two pointers Unsorted: Use hash map, key = target - a[i] ...

  6. 修改Chrome的User Agent的方法 真实有效

    如何修改Chrome的User Agent: 通过网络上查找,修改Chrome的Usre Agent有3种方式,但有的方式是不起作用的. 给Chrome添加启动参数(有作用) 通过扩展-User-Ag ...

  7. Linux下如何进行FTP安装与设置

    1. 先用rpm -qa| grep vsftpd命令检查是否已经安装,如果ftp没有安装,使用yum  -y  install vsftpd 安装,(ubuntu 下使用apt-get instal ...

  8. 【二进制拆分多重背包】【HDU1059】【Dividing】

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. php get_magic_quotes_gpc() addslashes()

    最近学了学PHP,看到这段代码 function daddslashes($str){       return (!get_magic_quotes_gpc())?addslashes($str): ...

  10. .net通用权限框架B/S(一)

    一直做软件实施,用过一些二次开发平台,最近看了一些大神写的框架,于是参考写了一个B/S通用权限框架,项目使用MVC4+EF5+EASYUI(.net framework4),开发环境vs2010+sq ...