Description

Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.

FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).

Input

Line 1: Two space-separated integers: N and T.
Line 2: N space-separated integers, respectively
V
1,
V
2, ...,
VN coins (
V
1, ...
VN)

Line 3: N space-separated integers, respectively
C
1,
C
2, ...,
CN

Output

Line 1: A line containing a single integer, the minimum number of coins involved in a payment and change-making. If it is impossible for Farmer John to pay and receive exact change, output -1.

Sample Input

3 70
5 25 50
5 2 1

Sample Output

3
 
题意:给出钱币的方案数和总价值,然后给出每种钱币的价值与数量,而老板也是每种钱币都拥有,但是没有数量限制,购买东西的时候,价值超过给定价值的话,老板会找钱,要求最小的交流钱币的数量
 
思路:这题想了很久没有想出思路,虽然知道是背包,但是不知道该如何让运用,看了别人的代码,感觉人家的思路真心碉堡了,讲解在代码中
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int v[105],c[105],MAX,n,sum;
int dp[33333],inf = 100000000; void ZeroOnePack(int cost,int cnt)
{
int i;
for(i = sum+MAX; i>=cost; i--)
dp[i] = min(dp[i],dp[i-cost]+cnt);//找出最小数量的方案
} void CompletePack(int cost,int cnt)
{
int i;
for(i = sum+MAX+cost; i>=0; i--)
dp[i] = min(dp[i],dp[i-cost]+cnt);
} int MultiplePack()
{
int i,j,k;
for(i = 1; i<=sum+MAX; i++)
dp[i] = inf;
dp[0] = 0;//dp数组用来记录钱币数量
for(i = 1; i<=2*n; i++)
{
if(i<=n)//这是顾客购买时所给的钱的数量
{
k = 1;
while(k<c[i])
{
ZeroOnePack(k*v[i],k);
c[i]-=k;
k*=2;
}
ZeroOnePack(c[i]*v[i],c[i]);
}
else
CompletePack(-v[i-n],1);//只所以是负数,是因为这是老板找钱的数目
}
if(dp[sum]==inf)
return -1;
else
return dp[sum];
} int main()
{
int i;
while(~scanf("%d%d",&n,&sum))
{
MAX = 0;
for(i=1; i<=n; i++)
{
scanf("%d",&v[i]);
MAX = max(MAX,v[i]);
}
MAX*=MAX;//保证背包足够大
for(i=1; i<=n; i++)
scanf("%d",&c[i]);
printf("%d\n",MultiplePack());
} return 0;
}

POJ3260:The Fewest Coins(混合背包)的更多相关文章

  1. POJ3260——The Fewest Coins(多重背包+完全背包)

    The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...

  2. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  3. POJ3260 The Fewest Coins(混合背包)

    支付对应的是多重背包问题,找零对应完全背包问题. 难点在于找上限T+maxv*maxv,可以用鸽笼原理证明,实在想不到就开一个尽量大的数组. 1 #include <map> 2 #inc ...

  4. 洛谷P2851 [USACO06DEC]最少的硬币The Fewest Coins(完全背包+多重背包)

    题目描述 Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always p ...

  5. poj3260 The Fewest Coins

    Description Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he a ...

  6. POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)

    题目代号:POJ 3260 题目链接:http://poj.org/problem?id=3260 The Fewest Coins Time Limit: 2000MS Memory Limit: ...

  7. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  8. The Fewest Coins POJ - 3260

    The Fewest Coins POJ - 3260 完全背包+多重背包.基本思路是先通过背包分开求出"付出"指定数量钱和"找"指定数量钱时用的硬币数量最小值 ...

  9. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

随机推荐

  1. [Cycle.js] Generalizing run() function for more types of sources

    Our application was able to produce write effects, through sinks, and was able to receive read effec ...

  2. 老漏洞easy击:CVE-2012 0158占顶!

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXF1c2hp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/d ...

  3. Eclipse 将projectBuild Path中引用的jar包自己主动复制到WEB-INF下的lib目录下

    在用用 Eclipse进行Java Web开发时,web应用中引用的jar须要复制到WEB-INF下的lib目录下,否则常常出现ClassNotFound异常. 通过以下方法,能够不用手动拷贝jar包 ...

  4. 基于akka实现简单的主从框架

    ========================Master============================== package com.scala.akka.rpc.demo2 import ...

  5. Python进阶之路---1.2python版本差异

    Python2.*与python3.*版本差异 作为一个初学者,我们应该如何选择python的版本进行学习呢,这两个版本有什么区别呢,接下来让我们简单了解一下,以便我们后续的学习. Python版本差 ...

  6. Mysql配置调优(转自阿铭论坛)

    Mysql配置文件my.cnf参数优化对于新手来讲,是比较难懂的东西,其实这个参数优化,是个很复杂的东西,对于不同的网站,及其在线量,访问量,帖子数量,网络情况,以及机器硬件配置都有关系,优化不可能一 ...

  7. NSSet使用小结

    http://blog.csdn.net/ms2146/article/details/8657011

  8. SignalR2.0开发实例之——群发消息

    一.前言 ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以互相 ...

  9. Linux知识扫盲

    1.发现linux中好多软件以d结尾,d代表什么? d 代表 deamon 守护进程守护进程是运行在Linux服务器后台的一种服务程序.现在比较常用 是 service 这个词.它周期性地执行某种任务 ...

  10. jQuery插件学习(一)

    由于项目开发需要,经常会用到一些jquery插件,但网上已有的插件常常又不能100%满足业务需求,所以就想自己能看懂插件的代码,进行一些功能上的改动和补充,或者能自己自定义插件就更好了.所以这段时间会 ...