flume的自定义sink-Kafka
1、创建一个agent,sink类型需指定为自定义sink
vi /usr/local/flume/conf/agent3.conf
agent3.sources=as1
agent3.channels=c1
agent3.sinks=s1
agent3.sources.as1.type=avro
agent3.sources.as1.bind=0.0.0.0
agent3.sources.as1.port=41414
agent3.sources.as1.channels=c1
agent3.channels.c1.type=memory
agent3.sinks.s1.type=storm.test.kafka.TestKafkaSink
agent3.sinks.s1.channel=c1
2、创建自定义kafka sink(自定义kafka sink中包装的是kafka的生产者),代码如下
//参考flume官方的开发文档:http://flume.apache.org/FlumeDeveloperGuide.html#sink
//自定义kafkasink需要继承AbstractSink类实现Configurable接口
//该sink中使用的kafka topic(test111)必须存在
package storm.test.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import kafka.serializer.StringEncoder;
import org.apache.flume.Channel;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.Transaction;
import org.apache.flume.conf.Configurable;
import org.apache.flume.sink.AbstractSink;
public class TestKafkaSink extends AbstractSink implements Configurable {
Producer<String, String> producer;
String topic = "test111";
@Override
public Status process() throws EventDeliveryException {
Status status = null;
Channel channel = getChannel();
Transaction transaction = channel.getTransaction();
transaction.begin();
try {
Event event = channel.take();
if (event==null) {
transaction.rollback();
status = Status.BACKOFF;
return status;
}
byte[] body = event.getBody();
final String msg = new String(body);
final KeyedMessage<String, String> message = new KeyedMessage<String, String>(topic , msg);
producer.send(message);
transaction.commit();
status = Status.READY;
} catch (Exception e) {
transaction.rollback();
status = Status.BACKOFF;
} finally {
transaction.close();
}
return status;
}
@Override
public void configure(Context arg0) {
Properties prop = new Properties();
prop.put("zookeeper.connect", "h5:2181,h6:2181,h7:2181");
prop.put("metadata.broker.list", "h5:9092,h6:9092,h7:9092");
prop.put("serializer.class", StringEncoder.class.getName());
producer = new Producer<String, String>(new ProducerConfig(prop));
}
}
将代码打包为kafkasink.jar后复制到flume所在节点上的flume/lib目录下,然后还需要将kafka_2.10-0.8.2.0.jar、kafka-clients-0.8.2.0.jar、metrics-core-2.2.0.jar、scala-library-2.10.4.jar这4个jar包复制到flume所在节点上的flume/lib目录下。
3、启动flume自定义的kafkasink的agent
[root@h5 ~]# cd /usr/local/flume/
[root@h5 flume]# bin/flume-ng agent --conf conf/ --conf-file conf/agent3.conf --name agent3 -Dflume.root.logger=INFO,console
4、将日志写入到flume的agent,代码如下
log4j.properties
log4j.rootLogger=INFO,flume
log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 192.168.1.35
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true
将日志写入到flume,代码如下
package com.mengyao.flume;
import java.io.File;
import java.io.IOException;
import java.util.Collection;
import java.util.List;
import org.apache.commons.io.FileUtils;
import org.apache.log4j.Logger;
public class FlumeProducer {
private static List<String> getLines() {
List<String> lines = null;
try {
final Collection<File> listFiles = FileUtils.listFiles(new File("D:/"), null, false);
for (File file : listFiles) {
lines = FileUtils.readLines(file);
break;
}
} catch (IOException e) {
e.printStackTrace();
}
return lines;
}
public static void main(String[] args) throws Exception {
final List<String> lines = getLines();
final Logger logger = Logger.getLogger(FlumeProducer.class);
for (String line : lines) {
logger.info(line+"\t"+System.currentTimeMillis());
Thread.sleep(1000);
}
}
}
必须加入flume-ng-log4jappender-1.5.0-cdh5.1.3-jar-with-dependencies.jar这个依赖jar
5、使用kafka消费者消费flume(自定义kafka sink中使用了kafka的生产者)生产的数据
1、消费者shell代码
[root@h7 kafka]# bin/kafka-console-consumer.sh --zookeeper h7:2181 --topic test111 --from-beginning ##kafka集群是h5、h6、h7;zookeeper集群是h5、h6、h7。在任意kafka节点上使用消费者都一样
2、消费者java代码
package storm.test.kafka;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringEncoder;
public class TestConsumer {
static final String topic = "test111";
public static void main(String[] args) {
Properties prop = new Properties();
prop.put("zookeeper.connect", "h5:2181,h6:2181,h7:2181");
prop.put("serializer.class", StringEncoder.class.getName());
prop.put("metadata.broker.list", "h5:9092,h6:9092,h7:9092");
prop.put("group.id", "group1");
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(prop));
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, 1);
Map<String, List<KafkaStream<byte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
final KafkaStream<byte[], byte[]> kafkaStream = messageStreams.get(topic).get(0);
ConsumerIterator<byte[], byte[]> iterator = kafkaStream.iterator();
while (iterator.hasNext()) {
String msg = new String(iterator.next().message());
System.out.println("收到消息:"+msg);
}
}
}
flume的自定义sink-Kafka的更多相关文章
- Hadoop实战-Flume之自定义Sink(十九)
import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import j ...
- Hadoop生态圈-Flume的组件之自定义Sink
Hadoop生态圈-Flume的组件之自定义Sink 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客主要介绍sink相关的API使用两个小案例,想要了解更多关于API的小技 ...
- 数据采集组件:Flume基础用法和Kafka集成
本文源码:GitHub || GitEE 一.Flume简介 1.基础描述 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中 ...
- Flink自定义Sink
Flink自定义Sink Flink 自定义Sink,把socket数据流数据转换成对象写入到mysql存储. #创建Student类 public class Student { private i ...
- flume自定义Source(taildirSource),自定义Sink(数据库),开发完整步骤
一.flume简单了解推荐网站(简介包括简单案例部署): http://www.aboutyun.com/thread-8917-1-1.html 二.我的需求是实现从ftp目录下采集数据,目录下文件 ...
- 自定义flume的hbase sink 的序列化程序
package com.hello.hbase; import java.nio.charset.Charset; import java.text.SimpleDateFormat; import ...
- flume 自定义sink
http://flume.apache.org/FlumeDeveloperGuide.html#sink 看了 还是比较好上手的,简单翻译一下 sink的作用是从 Channel 提取 Event ...
- flume-ng 自定义sink消费flume source
如何从一个已经存在的Flume source消费数据 1.下载flume wget http://www.apache.org/dist/flume/stable/apache-flume-1.5.2 ...
- 《OD学Flume》20160806Flume和Kafka
一.Flume http://flume.apache.org/FlumeUserGuide.html Flume是一个分布式的,可靠的,可用的,非常有效率的对大数据量的日志数据进行收集.聚集.移动信 ...
随机推荐
- HDU 3791 二叉搜索树 题解
Problem Description 推断两序列是否为同一二叉搜索树序列 Input 開始一个数n,(1<=n<=20) 表示有n个须要推断,n= 0 的时候输入结束. 接下去一行是 ...
- Hadoop32位和64位的查询
1.查看自己的hadoop版本是32位还是64位 进入: hadoop-2.6.4/lib/native 使用file命令 file libhadoop.so.1.0.0
- NOI2015 程序自动分析
/* 十分简单的题面 离散化一下 然后并茶几一下就OK了 跑的死慢 可能还有更优的方法吧 */ #include<iostream> #include<cstdio> #inc ...
- 腾讯云(centos7)上安装并配置PHP
1.查看yum上的php $ yum list php Loaded plugins: fastestmirror, langpacks Loading mirror speeds from cach ...
- 设为首页 收藏(IE可用)
function SetHome(obj, vrl) { try { obj.style.behavior = 'url(#default#homepage)'; obj.setHomePage(vr ...
- 返回到上一页的html代码的几种写法
关键词:返回上一页 html代码超链接返回上一页代码: <a href=”#” onClick=”javascript :history.back(-1);”>返回上一页</a> ...
- WebStorm修改默认快捷键
打开 "File" -> "Setting" -> "keymap",即可修改.
- 小学生之解析XML应用
1.什么是XML? 解析:XML:Extensible Markup Language(可扩展标记语言) HTML:HyperLink Text Markup Language(超文本标记语言) ...
- 单例模式 与lock用法
在之前没用lock之前:如果我实现单例模式:直接就是下面的代码: public class Singleton { private static Singleton instanc ...
- DOM基础之“寻找”子节点
今天学习了JS中的DOM的内容,虽然小菜的理解不深,但希望能够记录下来,慢慢一点一点的进步,有更深的理解了,再回来补充. 首先,关于DOM的概念: 1.概念:DOM = document(文档)Obj ...