Problem Description
        A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

 
Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

 
Output
For each test case print a single line specifying the corresponding postorder sequence.

 
Sample Input
9
1 2 4 7 3 5 8 9 6
4 7 2 1 8 5 9 3 6
 
Sample Output
7 4 2 8 9 5 6 3 1
 
 
 
 

注: 已知二叉树的前序和中序遍历, 可以唯一确定二叉树的后序遍历, 但如果知道前序和后序,求中序遍历是不可能实现的.

 

算法:

由前序遍历的第一个元素可确定左、右子树的根节点,参照中序遍历又可进一步确定子树的左、

右子树元素。如此递归地参照两个遍历序列,最终构造出二叉树。

由前序和中序结果求后序遍历结果

树的遍历:给你一棵树的先序遍历结果和中序遍历的结果,让你求以后序遍历输出用递归。

每次把两个数组分成三个部分,父节点,左子树,右子树,把父节点放到数组里边,重复此步骤直到重建一棵新树

,  这时,数组里元素刚好是后序遍历的顺序

关键点:

中序遍历的特点是先遍历左子树,接着根节点,然后遍历右子树。这样根节点就把左右子树隔开了。而前序遍历的特点是先访问根节点,从而实现前序遍历结果提供根节点信息,中序遍历提供左右子树信息,从而实现二叉树的重建

【注明】

先序的排列里第一个元素是根,再比较中序的排列里根所在的位置,则能确定左子树,右子树元素个数numleft,numright且在先序排列里,先是一个根,再是numleft个左子树的元素排列,最后是numright个右子树的元素排列。

该过程就是从inorder数组中找到一个根,然后从preorder数组的位置来确定改点到底是左儿子还是右儿子。如此一直循环下去知道一棵完整的数建立完成。

#include <stdio.h>
#include <stdlib.h> const int MAX = 1000 + 10;
int n,in[MAX],pre[MAX];
typedef struct BITree
{
int data,index;
BITree *Left,*Right;
}BiTree,*Tree; void DFS(Tree &root,int index)
{
if(root == NULL){
root = (Tree)malloc(sizeof(BiTree));
root->data = in[index];
root->index = index;
root->Left = NULL;
root->Right = NULL;
}else
{
if(index < root->index)
DFS(root->Left,index);
else
DFS(root->Right,index);
}
} void CreateTree(Tree &root)
{
int i,j,index;
root = (Tree)malloc(sizeof(BiTree));
for(i = 1;i <= n;i++)
if(in[i] == pre[1])
{
root->data = pre[1];
root->index = i;
root->Left = NULL;
root->Right = NULL;
break;
}
index = i;
for(i = 2;i <= n;i++)
for(j = 1;j <= n;j++)
if(in[j] == pre[i])
{
if(j < index)
DFS(root->Left,j);
else
DFS(root->Right,j);
break;
}
} void PostOrder(Tree root,int x)
{
if(root == NULL) return ;
PostOrder(root->Left,x+1);
PostOrder(root->Right,x+1);
if(x == 0)
printf("%d",root->data);
else
printf("%d ",root->data);
} int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
Tree root;
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
CreateTree(root);
PostOrder(root,0);
printf("\n");
}
return 0;
}

 
#include <iostream>
#include <cstdio>
using namespace std; const int MAX = 1000 + 10;
typedef struct BITree
{
int data;
BITree *Left,*Right;
BITree()
{
Left = NULL;
Right = NULL;
}
}*BiTree;
int pre[MAX],in[MAX]; void BuildTree(BiTree &root,int len,int pst,int ped,int inst,int ined)
{
int i,left_len = 0;
if(len<=0)return; //递归终止的条件
root = new BITree;
root->data = pre[pst];
for(i = inst;i <= ined;i++)
if(in[i] == pre[pst])
{
left_len = i - inst;
break;
}
BuildTree(root->Left,left_len,pst+1,pst+left_len,inst,i-1);
BuildTree(root->Right,len-left_len-1,pst+left_len+1,ped,i+1,ined);
} void PostTravel(BITree *root)
{
if(root)
{
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d ",root->data);
}
} int main()
{
int i,n;
BiTree root;
while(scanf("%d",&n)!=EOF)
{
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
BuildTree(root,n,1,n,1,n);
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d\n",root->data);
}
return 0;
}

Hdu Binary Tree Traversals的更多相关文章

  1. HDU 1710 二叉树的遍历 Binary Tree Traversals

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. HDU 1710 Binary Tree Traversals (二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  3. HDU 1710 Binary Tree Traversals(树的建立,前序中序后序)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  4. hdu 1710 Binary Tree Traversals 前序遍历和中序推后序

    题链;http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (J ...

  5. hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)

                                                                                Binary Tree Traversals T ...

  6. hdu1710(Binary Tree Traversals)(二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. HDU-1701 Binary Tree Traversals

    http://acm.hdu.edu.cn/showproblem.php?pid=1710 已知先序和中序遍历,求后序遍历二叉树. 思路:先递归建树的过程,后后序遍历. Binary Tree Tr ...

  8. HDU 1710-Binary Tree Traversals(二进制重建)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  9. Binary Tree Traversals(HDU1710)二叉树的简单应用

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. 如何在你的project中使用support library【转】

    Android support library是google以jar包形式提供的一个代码库,里面包含一些向后兼容的framework API以及一些只有在这个library中才提供的feature. ...

  2. Linux下的Oracle 11gr2安装完成的的自启动操作。

    Linux下的Oracle在安装结束后是处于运行状态的.重启机器后,Oracle不会像在Windows下那样将Oracle添加到Windows服务,在linux下需要手动启动Orcle服务 以orac ...

  3. ubuntu下tcpdump使用

    Ubuntu默认是安装好了tcpdump工具的,如果没有安装的话使用sudo apt-get install tcpdump即可安装.   (如果遇到tcpdump: no suitable devi ...

  4. Android 给Button加个监听

    1.日期设置控件:DatePickerDialog 2.时间设置控件:TimePickerDialog 实例代码 1.页面添加两个Button,单击分别显示日期设置控件和时间设置控件,还是有TextV ...

  5. Magento - get Attribute Options of the dropdown type attribute

      $attribute_code = "color"; $attribute_details = Mage::getSingleton("eav/config" ...

  6. LA - 5031 - Graph and Queries

    题意:一个N个点(编号从1开始),M条边的无向图(编号从1开始),有3种操作: D X:把编号为X的边删了: Q X K:查询编号为X的结点所在连通分量第K大的元素: C X V:将编号为X的结点的权 ...

  7. jQuery load()和ready()

    ready与load谁先执行: 大家在面试的过程中,经常会被问到一个问题:ready与load那一个先执行,那一个后执行?答案是ready先执行,load后执行. DOM文档加载的步骤: 要想理解为什 ...

  8. root cause:org.apache.struts2.json.JSONException: java.lang.reflect.InvocationTargetException

    今天在调试SSH与Ajax时,服务器端报出JSON异常:

  9. 剑指offer第10题

    import java.util.Scanner; /* 前两种方法是看最低为是不是为1,不为1则向右移动. 第一种只能对正整数有效,对负数不行,因为负数用的是补码,最高外符号位为1,最后右移动,肯定 ...

  10. windows下,用绝对路径向html文件中插入图片

    首先注意路径中是否包含中文名比如 <img src="F:\头像\小黄人.jpg" width="500" height="200"/ ...