【SDOI2017】套路总结
1
第一题是裸的反演;
\[\begin{align}
Ans&=\prod_{i=1}^n\prod_{j=1}^ma[(i,j)]\\
&=\prod_{d=1}^na[d]^{f(d)}\\
f(d)&=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor\mu(i)
\end{align}\]
考虑更换为枚举\(i*d\),
那么就有,
\[\begin{align}
Ans&=\prod_{k=1}^n\sum_{d|k}a[d]^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\mu(\frac{k}{d})}\\
&=\prod_{k=1}^n(\sum_{d|k}a[d]^{\mu(\frac{k}{d})})^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor}
\end{align}\]
显然,我们可以预处理\((\sum_{d|k}a[d]^{\mu(\frac{k}{d})})\),于是就能分块做了。
2
如果一个结点与其父亲颜色不同,就给他打上标记1。
3
至少存在一个=存在=所有-不存在;
我们用dp来进行序列计数,\(f[i][j]\)表示前i个数的前缀和%p的值为j的方案数。
显然可以矩阵乘法。
【SDOI2017】套路总结的更多相关文章
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- [SDOI2017]遗忘的集合
[SDOI2017]遗忘的集合 综合了很多套路的题 一看就是完全背包 生成函数! 转化为连乘积形式 Pi....=F 求Ln! 降次才可以解方程 发现方程是: f[i]=∑t|i : bool(t)* ...
- SDOI2017 Round2 详细题解
这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\ ...
- SDOI2017 Round1 简要题解
我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[ ...
- 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- iOS app内存分析套路
iOS app内存分析套路 Xcode下查看app内存使用情况有2中方法: Navigator导航栏中的Debug navigator中的Memory Instruments 一.Debug navi ...
- 游戏的套路你知道吗? H5 Canvas刮刮乐
玩游戏的人 很多时候都会遇到翻牌子 开宝箱. 总有人傻傻的在哪里还纠结很久到底点哪一个! 纠结 指不定翻哪一个会多一点,你明明看到那个卡片的奖项多 . 那我就告诉你好了 其实很多时候在你点开那个 ...
随机推荐
- mysql索引优化及explain关键字段解释
一.explain关键字解释 1.id MySQL QueryOptimizer 选定的执行计划中查询的序列号,表示查询中执行select 子句或操作表的顺序.id 值越大优先级越高,越先被执行.id ...
- Ubuntu18上安装Go和GoLand
第一步骤:安装Go 方式一: 使用 sudo apt-get install golang命令安装 ubuntu软件库里当前golang版本为1.10,(golang最新版为1.11),可满足要求. ...
- 嘴巴题5 「BZOJ1864」[ZJOI2006] 三色二叉树
1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1195 Solved: 882 [Submit][Status ...
- windows API 第 18篇 FindFirstVolume FindNextVolume
函数定义:Retrieves the name of a volume on a computer. FindFirstVolume is used to begin scanning the vol ...
- python urllib模块中的方法
1.urllib.urlopen(url[,data[,proxies]]) 打开一个url的方法,返回一个文件对象,然后可以进行类似文件对象的操作.本例试着打开google >>> ...
- 后缀数组(SA)及height数组
最近感觉自己越来越蒟蒻了--后缀数组不会,费用流不会-- 看着别人切一道又一道的题,我真是很无奈啊-- 然后,我花了好长时间,终于弄懂了后缀数组. 后缀数组是什么? 后缀SASASA数组 给你一个字符 ...
- agc034
A:题意:你有一个1 * n的网格,有些地方是障碍.你有两个人,分别要从a到b和从c到d,一次只能向右跳1步或者两步.求是否可行. 解:先判断有没有2个连续的障碍,然后判断是否能错车. #includ ...
- https://blog.csdn.net/u012235003/article/details/54576737
https://blog.csdn.net/u012235003/article/details/54576737
- python基础---内置函数 和 匿名函数 知识点自查填空题
1.file ---默认是输出到(),如果设置为(),输出到() 2.sep---打印(),默认为() 3.end---每一次打印的结尾,默认为() 4.flush---立即把内容输出到(),不做() ...
- mysql中的字符集和校对规则(mysql校对集)
1.简要说明介绍 字符集和校对规则 字符集是一套符号和编码.校对规则是在字符集内用于比较字符的一套规则. MySql在collation提供较强的支持,oracel在这方面没查到相应的资料. 不同字符 ...