1

第一题是裸的反演;
\[\begin{align}
Ans&=\prod_{i=1}^n\prod_{j=1}^ma[(i,j)]\\
&=\prod_{d=1}^na[d]^{f(d)}\\
f(d)&=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor\mu(i)
\end{align}\]
考虑更换为枚举\(i*d\),
那么就有,
\[\begin{align}
Ans&=\prod_{k=1}^n\sum_{d|k}a[d]^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\mu(\frac{k}{d})}\\
&=\prod_{k=1}^n(\sum_{d|k}a[d]^{\mu(\frac{k}{d})})^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor}
\end{align}\]
显然,我们可以预处理\((\sum_{d|k}a[d]^{\mu(\frac{k}{d})})\),于是就能分块做了。

2

如果一个结点与其父亲颜色不同,就给他打上标记1。

3

至少存在一个=存在=所有-不存在;
我们用dp来进行序列计数,\(f[i][j]\)表示前i个数的前缀和%p的值为j的方案数。
显然可以矩阵乘法。

【SDOI2017】套路总结的更多相关文章

  1. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. [SDOI2017]遗忘的集合

    [SDOI2017]遗忘的集合 综合了很多套路的题 一看就是完全背包 生成函数! 转化为连乘积形式 Pi....=F 求Ln! 降次才可以解方程 发现方程是: f[i]=∑t|i : bool(t)* ...

  4. SDOI2017 Round2 详细题解

    这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\ ...

  5. SDOI2017 Round1 简要题解

    我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[ ...

  6. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. iOS app内存分析套路

    iOS app内存分析套路 Xcode下查看app内存使用情况有2中方法: Navigator导航栏中的Debug navigator中的Memory Instruments 一.Debug navi ...

  9. 游戏的套路你知道吗? H5 Canvas刮刮乐

    玩游戏的人 很多时候都会遇到翻牌子  开宝箱. 总有人傻傻的在哪里还纠结很久到底点哪一个! 纠结  指不定翻哪一个会多一点,你明明看到那个卡片的奖项多 . 那我就告诉你好了  其实很多时候在你点开那个 ...

随机推荐

  1. Python学习day35-并发编程(1)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  2. Mysql 增加rownum

    Mysql 增加rownum 实现(极度推荐) mysql本身不像oracle那样使用 rownum 来显示行号的功能.但是可以使用设置变量的方式来实现这一功能. mysql使用 @ 定义用户变量, ...

  3. 手机端META详细解释

    一.天猫 <title>天猫触屏版</title> <meta content="text/html; charset=utf-8" http-equ ...

  4. springboot 2+ druid

    springboot 1+ druid druid 配置 import com.alibaba.druid.pool.DruidDataSource; import com.alibaba.druid ...

  5. 很好用的API管理--Swagger

    1.打开NuGet程序包 2.安装下面两个程序包 3.安装完后会出现SwaggerConfig.cs类,并修改里面的内容 代码: [assembly: PreApplicationStartMetho ...

  6. NoSQL 图形数据库

  7. PKUWC 2018 真实排名

    PKUWC2018 真实排名 题面描述 共有\(n\)个人,每个人有一个能力值,每个人的排名为所有能力值不比他小的人的个数(包括他自己). 现在有\(k\)个人能力值翻倍,但我们无法得知是哪\(k\) ...

  8. 模板:KD-Tree

    KD-Tree,用来解决多维空间中的问题,其实就是优化暴力(逃 一般cdq能做的它都能做,而且...既然是优化暴力,那就学习一下了 对与几个n维点,我们将它每一维分割,建立一颗二叉树,方便我们搜索剪枝 ...

  9. js的相关距离

    js的相关距离 一.dom对象的距离 ---dom.style.width : 对象本身的内容宽度(这里必须是内联样式中的width,带px)(content) ---dom.style.height ...

  10. md5密码入库

    <?php //连接数据库 $pdo = new PDO('mysql:host=localhost;dbname=md5;charset=UTF8', 'root', ''); # 设置为fa ...