1

第一题是裸的反演;
\[\begin{align}
Ans&=\prod_{i=1}^n\prod_{j=1}^ma[(i,j)]\\
&=\prod_{d=1}^na[d]^{f(d)}\\
f(d)&=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor\mu(i)
\end{align}\]
考虑更换为枚举\(i*d\),
那么就有,
\[\begin{align}
Ans&=\prod_{k=1}^n\sum_{d|k}a[d]^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\mu(\frac{k}{d})}\\
&=\prod_{k=1}^n(\sum_{d|k}a[d]^{\mu(\frac{k}{d})})^{\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor}
\end{align}\]
显然,我们可以预处理\((\sum_{d|k}a[d]^{\mu(\frac{k}{d})})\),于是就能分块做了。

2

如果一个结点与其父亲颜色不同,就给他打上标记1。

3

至少存在一个=存在=所有-不存在;
我们用dp来进行序列计数,\(f[i][j]\)表示前i个数的前缀和%p的值为j的方案数。
显然可以矩阵乘法。

【SDOI2017】套路总结的更多相关文章

  1. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. [SDOI2017]遗忘的集合

    [SDOI2017]遗忘的集合 综合了很多套路的题 一看就是完全背包 生成函数! 转化为连乘积形式 Pi....=F 求Ln! 降次才可以解方程 发现方程是: f[i]=∑t|i : bool(t)* ...

  4. SDOI2017 Round2 详细题解

    这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\ ...

  5. SDOI2017 Round1 简要题解

    我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[ ...

  6. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. iOS app内存分析套路

    iOS app内存分析套路 Xcode下查看app内存使用情况有2中方法: Navigator导航栏中的Debug navigator中的Memory Instruments 一.Debug navi ...

  9. 游戏的套路你知道吗? H5 Canvas刮刮乐

    玩游戏的人 很多时候都会遇到翻牌子  开宝箱. 总有人傻傻的在哪里还纠结很久到底点哪一个! 纠结  指不定翻哪一个会多一点,你明明看到那个卡片的奖项多 . 那我就告诉你好了  其实很多时候在你点开那个 ...

随机推荐

  1. Python学习day13-函数进阶(1)

    Python学习day13-函数进阶(1) 闭包函数 闭包函数,从名字理解,闭即是关闭,也就是说把一个函数整个包起来.正规点说就是指函数内部的函数对外部作用域而非全局作用域的引用. 为函数传参的方式有 ...

  2. https证书加密

    对称加密 浏览器向服务端发送请求时,服务端首先给浏览器发送一个秘钥,浏览器用秘钥对传输的数据进行加密后发送给浏览器,浏览器拿到加密后的数据使用秘钥进行解密 非对称加密 服务端通过rsa算法生成一个公钥 ...

  3. jquery刷新局部和全页的方法

    一.全页面刷新方法: window.location.reload()刷新当前页面. parent.location.reload()刷新父亲对象(用于框架) opener.location.relo ...

  4. net.sf.json JSONObject与JSONArray总结

    JSONObject:json对象,就是一个键对应一个值,使用的是大括号{ },如:{key:value} JSONArray:json数组,使用中括号[ ],只不过数组里面的项也是json键值对格式 ...

  5. Leetcode963. Minimum Area Rectangle II最小面积矩形2

    给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. 示例 1: 输入:[[1,2],[2,1],[1,0] ...

  6. List循环添加对象时遇到问题的解决

    var temp=new handleData(); foreach(var t in data) { temp.DataValue = t.DataValue; temp.CreateTime = ...

  7. CodeForces - 1087D

    CodeForces - 1087Dhttps://vjudge.net/problem/2115151/origin2*和/叶子结点的个数 #include<iostream> #inc ...

  8. List--使用List作为堆栈和队列

    1,List作为堆栈 堆栈“先进后出”.对此,可以使用append和pop来操作数据. 不指定下标时,pop会先操作最后一个数据. 例如: 2,队列 队列“先进先出”.当然也可以使用append和po ...

  9. csp-s模拟测试51(b)attack,tree题解

    题面:https://www.cnblogs.com/Juve/articles/11598286.html attack: 支配树裸题? 看一下支配树是什么: 问题:我们有一个有向图(可以有环),定 ...

  10. 44个 Javascript 变态题解析 (上)

    原题来自: javascript-puzzlers(http://javascript-puzzlers.herokuapp.com/) 读者可以先去做一下感受感受. 当初笔者的成绩是 21/44… ...