原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933

1、创建一个RDD变量,通过help函数,查看相关函数定义和例子:

>>> a = sc.parallelize([(1,2),(3,4),(5,6)])

>>> a
ParallelCollectionRDD[21] at parallelize at PythonRDD.scala:475
>>> help(a.map) Help on RDD in module pyspark.rdd object: class RDD(__builtin__.object)
| A Resilient Distributed Dataset (RDD), the basic abstraction in Spark.
| Represents an immutable, partitioned collection of elements that can be
| operated on in parallel.
|
| Methods defined here:
|
| __add__(self, other)
| Return the union of this RDD and another one.
|
| >>> rdd = sc.parallelize([1, 1, 2, 3])
| >>> (rdd + rdd).collect()
| [1, 1, 2, 3, 1, 1, 2, 3]

RDD是什么?
RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD。从编程的角度来看,RDD可以简单看成是一个数组。和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理。因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果。

2、map(function)

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

map(self, f, preservesPartitioning=False) method of pyspark.rdd.RDD instance
Return a new RDD by applying a function to each element of this RDD.
>>> rdd = sc.parallelize(["b", "a", "c"])
>>> sorted(rdd.map(lambda x: (x, 1)).collect())
[('a', 1), ('b', 1), ('c', 1)]

3、mapPartitions(function)

map()的输入函数是应用于RDD中每个元素,而mapPartitions()的输入函数是应用于每个分区

mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。

mapPartitions(self, f, preservesPartitioning=False) method of pyspark.rdd.RDD instance
Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> def f(iterator): yield sum(iterator)
>>> rdd.mapPartitions(f).collect()
[3, 7]

4、mapValues(function)

原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。

mapValues(self, f) method of pyspark.rdd.RDD instance
Pass each value in the key-value pair RDD through a map function
without changing the keys; this also retains the original RDD's
partitioning.
>>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])])
>>> def f(x): return len(x)
>>> x.mapValues(f).collect()
[('a', 3), ('b', 1)]

5、flatMap(function) 
与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素

Help on method flatMap in module pyspark.rdd:

flatMap(self, f, preservesPartitioning=False) method of pyspark.rdd.RDD instance
Return a new RDD by first applying a function to all elements of this
RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: range(1, x)).collect())
[1, 1, 1, 2, 2, 3]
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]

6、flatMapValues(function)

flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。

flatMapValues(self, f) method of pyspark.rdd.RDD instance
Pass each value in the key-value pair RDD through a flatMap function
without changing the keys; this also retains the original RDD's
partitioning.
>>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])])
>>> def f(x): return x
>>> x.flatMapValues(f).collect()
[('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')]

7、reduce函数

reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

reduce(self, f) method of pyspark.rdd.RDD instance
Reduces the elements of this RDD using the specified commutative and
associative binary operator. Currently reduces partitions locally. >>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add)
15
>>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add)
10
>>> sc.parallelize([]).reduce(add)
Traceback (most recent call last):
...
ValueError: Can not reduce() empty RDD

例子如下:

>>> from operator import add
>>> b.collect()
[1, 2, 3, 4, 5, 6]
>>> b.reduce(add) # 引入内置函数
21
>>> b.reduce(lambda a,b:a+b) # lambda自定义的匿名函数
21

8、reduceByKey函数

顾名思义,reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行reduce,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

Help on method reduceByKey in module pyspark.rdd:

reduceByKey(self, func, numPartitions=None, partitionFunc=<function portable_hash>) method of pyspark.rdd.RDD instance
Merge the values for each key using an associative and commutative reduce function. This will also perform the merging locally on each mapper before
sending results to a reducer, similarly to a "combiner" in MapReduce. Output will be partitioned with C{numPartitions} partitions, or
the default parallelism level if C{numPartitions} is not specified.
Default partitioner is hash-partition. >>> from operator import add
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> sorted(rdd.reduceByKey(add).collect())
[('a', 2), ('b', 1)]

Spark API 之 map、mapPartitions、mapValues、flatMap、flatMapValues详解的更多相关文章

  1. .Net for Spark 实现 WordCount 应用及调试入坑详解

    .Net for Spark 实现WordCount应用及调试入坑详解 1.    概述 iNeuOS云端操作系统现在具备物联网.视图业务建模.机器学习的功能,但是缺少一个计算平台产品.最近在调研使用 ...

  2. 58、Spark Streaming: DStream的output操作以及foreachRDD详解

    一.output操作 1.output操作 DStream中的所有计算,都是由output操作触发的,比如print().如果没有任何output操作,那么,压根儿就不会执行定义的计算逻辑. 此外,即 ...

  3. [spark]-Spark2.x集群搭建与参数详解

    在前面的Spark发展历程和基本概念中介绍了Spark的一些基本概念,熟悉了这些基本概念对于集群的搭建是很有必要的.我们可以了解到每个参数配置的作用是什么.这里将详细介绍Spark集群搭建以及xml参 ...

  4. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  5. 对于maven创建spark项目的pom.xml配置文件(图文详解)

    不多说,直接上干货! http://mvnrepository.com/ 这里,怎么创建,见 Spark编程环境搭建(基于Intellij IDEA的Ultimate版本)(包含Java和Scala版 ...

  6. Spark源码系列(二)RDD详解

    1.什么是RDD? 上一章讲了Spark提交作业的过程,这一章我们要讲RDD.简单的讲,RDD就是Spark的input,知道input是啥吧,就是输入的数据. RDD的全名是Resilient Di ...

  7. Spark Structured Streaming框架(4)之窗口管理详解

    1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...

  8. Spark 系列(四)—— RDD常用算子详解

    一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元 ...

  9. SE6新特性之集合Set、Map、WeakSet和WeakMap详解

    SE5的时候我们经常用数组或者类数组对象来操作数据,而对于一些使用惯了java之类语言的集合的开发人员来说,总有少了点什么的感觉,SE6提供Set和Map这两个集合.不仅从根本上为一些问题提供了解决方 ...

随机推荐

  1. JetBrains Pycharm破解,含破解文件和安装包2019.2版

    此教程支持最新的2019.3版本的Pycharm,并兼容之前的版本. 一.准备工作: 1.下载Pycharm 有条件的可以自行去官网下载,这里我提供了我下载的版本,已上传到百度网盘,链接在下方. 2. ...

  2. 1z0-062 题库解析3

    The hr user executes the following query on the employees table but does not issue commit, rollback, ...

  3. Java ArrayList类的简单介绍

    ArrayList类的说明: ArrayList类是List接口的实现类,java.util.ArrayList集合数据存储的结构是数组结构. 特点: 元素增删慢,查找快.(由于日常开发中使用最多的功 ...

  4. Golang 正则匹配 -- regexp

    匹配特殊字符 //re :=regexp.MustCompile("[~!@#$%^&*(){}|<>\\\\/+\\-[]:\"?'::''"&qu ...

  5. GitHub进阶之利用Git远程仓库篇

    #在上一篇文章,相信大家对GitHub已经有了一个基础的理解 接下来我们来学习一下如何利用git来远程仓库 一,git是什么 git:一个免费的开源版本控制软件 用途:利用Git管理GitHub上的代 ...

  6. git查看远程仓库和本地的区别

    git diff 你可以用 git diff 来比较项目中任意两个版本的差异. $ git diff master..test 上面这条命令只显示两个分支间的差异,如果你想找出 master , te ...

  7. Ubuntu 设置中文输入法

    环境:新安装的Ubuntu 16.04 LTS 本来打算使用sogou拼音,但是在输入后的提示框中内容为乱码,因此尝试重新安装. 1.sudo apt-get remove sogoupinyin & ...

  8. Webpack实战(六):如何优雅地运用样式CSS预处理

    上一篇文章中,我主要分享了<Webpack如何分离样式文件>CSS 预处理器是一个能让你通过预处理器自己独有的语法来生成CSS的程序,css预处理指的是在开发中我们经常会使用一些样式预编译 ...

  9. Java中的循环语句

    1.1 while 循环语句 while 语句也称为条件判断语句. 循环方式 : 利用一个条件来控制是否要反复执行这个语句. 语法 : while(条件表达式){ 执行语句 } 当条件表达式的返回值为 ...

  10. [集训]FWT基础练习题

    题意 给出n个长度为20的二进制数和数字k,每次询问给出一个二进制数,问从n个数中挑k个数(不能重复)的按位或能包含询问的组合有多少个.数字均小于等于5E5,1s. 思考 强行算出2^20个答案,再O ...