[NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook
评测姬好快啊(港记号?)暴力40pts变成60pts
因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林
不难知道对于一个森林,其中树(联通块)的数量为$V-E$(V为节点数,E为边数)
也就是说对于每一个询问,只要求出蓝色节点数减去边数的答案就好了
点数和边数都可以用二维前缀和求,其中边可以分横边和竖边分别记录
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-')f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}const int M = ;
int n,m,Q,s[][],v[][],sx,sy,tx,ty,ans;
int dx[]={,,,-},
dy[]={,,-,};
char a[][];
void dfs(int x,int y){
v[x][y]=;
for(int i=;i<;i++){
int fx=x+dx[i],fy=y+dy[i];
if(v[fx][fy]||fx<sx||fx>tx||fy<sy||fy>ty||a[fx][fy]=='') continue;
dfs(fx,fy);
}
}
inline void BF(){
while(Q--){
memset(v,,sizeof(v));ans=;
sx=read(),sy=read(),tx=read(),ty=read();
for(int i=sx;i<=tx;i++)
for(int j=sy;j<=ty;j++)
if(!v[i][j]&&a[i][j]=='') ans++,dfs(i,j);
printf("%d\n",ans);
}
}int s1[M][M],s2[M][M],s3[M][M];
inline void Solve(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
a[i][j]=(a[i][j]=='');
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
s1[i][j]=a[i][j]+s1[i-][j]+s1[i][j-]-s1[i-][j-],
s2[i][j]=(a[i][j]&&a[i+][j])+s2[i-][j]+s2[i][j-]-s2[i-][j-],
s3[i][j]=(a[i][j]&&a[i][j+])+s3[i-][j]+s3[i][j-]-s3[i-][j-];
while(Q--){
sx=read(),sy=read(),tx=read(),ty=read();
int V=s1[tx][ty]-s1[sx-][ty]-s1[tx][sy-]+s1[sx-][sy-];
int E=s2[tx-][ty]-s2[tx-][sy-]-s2[sx-][ty]+s2[sx-][sy-]
+s3[tx][ty-]-s3[sx-][ty-]-s3[tx][sy-]+s3[sx-][sy-];
printf("%d\n",V-E);
}
}
int main(){
freopen("wang.in","r",stdin);
freopen("wang.out","w",stdout);
n=read(),m=read(),Q=read();
for(int i=;i<=n;i++)for(int j=;j<=m;j++)cin>>a[i][j];
// BF();
Solve();
return ;
}
[NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook的更多相关文章
- AtCoder:C - Nuske vs Phantom Thnook
C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...
- Nuske vs Phantom Thnook
Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...
- 「AT2381 [AGC015C] Nuske vs Phantom Thnook」
题目大意 给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数. 分析 ...
- AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)
题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...
- AGC015 C Nuske vs Phantom Thnook(前缀和)
题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...
- AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook
题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...
- [agc015c]nuske vs phantom thnook
题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...
- Atcoder C - Nuske vs Phantom Thnook(递推+思维)
题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...
- test20190827 NOIP2019 模拟赛
100+100+50=250.最后那道期望题需要用另外的方式统计. 精灵加护 ljss 被 M 个敌人打倒在地上啦!每个敌人有一个威力值 bi.但是他手中还拥有 N 把武器!每把武器有一个威力值 ai ...
随机推荐
- NX二次开发-查询信息窗口是否打开UF_UI_is_listing_window_open
#include <uf.h> #include <uf_ui.h> UF_initialize(); //打开信息窗口 UF_UI_open_listing_window() ...
- C++输入cin详解
输入原理: 程序的输入都建有一个缓冲区,即输入缓冲区.一次输入过程是这样的,当一次键盘输入结束时会将输入的数据存入输入缓冲区,而cin函数直接从输入缓冲区中取数据.正因为cin函数是直接从缓冲区取数据 ...
- Flink 1.9 FlinkKafkaProducer 使用 EXACTLY_ONCE 错误记录
使用flink FlinkKafkaProducer 往kafka写入数据的时候要求使用EXACTLY_ONCE语义 本以为本以为按照官网写一个就完事,但是却报错了 代码 package com.me ...
- 2019 牛客多校第五场 B generator 1
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题目大意 略. 分析 十进制矩阵快速幂. 代码如下 #include <bits/stdc++.h& ...
- 54Mbps、150Mbps、433Mbps 你知道这三个Wi-Fi速率怎么算的吗?
802.11g能够提供54Mbps的最大速率, 802.11n和802.11ac单流分别能够提供150Mbps和433Mbps的最大速率,这些数字是怎么算的呢?(看红字,更容易理解哟) ...
- AT指令集之Call
1.//unsolicited result code,URC表示BP->AP+ESIPCPI:<call_id>,<dir>,<sip_msg_type>, ...
- 2-MySQL高级-事务-基本概念(1)
事务 1. 为什么要有事务 事务广泛的运用于订单系统.银行系统等多种场景 例如: A用户和B用户是银行的储户,现在A要给B转账500元,那么需要做以下几件事: 检查A的账户余额>500元: A ...
- Guarded Suspention 要等到我准备好
线程在运行过程中需要停下来等待,然后再继续执行. 范例程序,一个线程(ClientThread)对另外一个线程(ServerThread)传递请求,实现一个模拟消息通道的功能. public clas ...
- Word 多级节标题设置和图表章节号自动生成
写文章的时候,正文.图表.节标题,通过“样式”可以进行统一设置,这里我记录了几点小技巧: 1.多级标题如何设置 假设我要设置三级标题,下面以图的形式记录方式: 设置完之后,应用即可. 章节设定之后,可 ...
- SpringCloud学习笔记《---05 Zuul---》基础篇