Segments
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10921   Accepted: 3422

Description

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!

Source

题意:t组数据,每组n个线段,都是给定四个点表,问是否存在一条直线使所有线段在这个直线上的投影互相至少相交于一点.

思路:转化成存在一条直线与所有线段都相交。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <set>
#define ll long long
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double xmult(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(xmult(l2.s,l1.s,l1.e))*sgn(xmult(l2.e,l1.s,l1.e)) <= ;
}
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
const int MAXN = ;
Line line[MAXN];
bool check(Line l1,int n)
{
if(sgn(dist(l1.s,l1.e)) == ) return false;
for(int i = ; i < n; i++)
if(Seg_inter_line(l1,line[i]) == false) return false;
return true;
} int main(void)
{
int n,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double x1,y1,x2,y2;
for(int i = ; i < n; i++)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
bool flag = false;
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].s,line[j].e),n) || check(Line(line[i].e,line[j].s),n)||check(Line(line[i].e,line[j].e),n) )
{
flag = true;
break;
} if(flag) printf("Yes!\n");
else printf("No!\n");
}
return ;
}

poj 3304 Segments(计算直线与线段之间的关系)的更多相关文章

  1. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  2. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  3. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  4. POJ 3304 Segments (直线与线段是否相交)

    题目链接 题意 : 能否找出一条直线使得所有给定的线段在该直线上的投影有一个公共点. 思路 : 假设存在一条直线a使得所有线段在该直线上的投影有公共点,则必存在一条垂直于直线a的直线b,直线b与所有线 ...

  5. Segments--poj3304(判断直线与线段之间的关系)

    http://poj.org/problem?id=3304 给你几条线段  然后 让你找到一条直线让他在这条直线上的映射有一个重合点 如果有这条直线的话  这个重合的部分的两个端点一定是某两条线段的 ...

  6. POJ 3304 Segments(直线)

    题目: Description Given n segments in the two dimensional space, write a program, which determines if ...

  7. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  8. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  9. 判断直线与线段相交 POJ 3304 Segments

    题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...

随机推荐

  1. [NOIP2019模拟赛]序列(Sequence)

    题目大意 有一个序列$A_i$ • 对于 i ≥ 1,如果有$ A_i > 0.A_{i+1}> 0$ 且存在 $A_{i+2}$,那么法老可以令$ Ai$ 和 $A_{i+1}$ 减一, ...

  2. Matrix Power Series

    Matrix Power Series 给出矩阵A,求矩阵\(A+A^2+...+A^k\)各个元素\(mod\ yyb\)的值,\(n\leq 30,k\leq 10^9,yyb\leq 10^4\ ...

  3. mysql主从跳过错误

    mysql主从复制,经常会遇到错误而导致slave端复制中断,这个时候一般就需要人工干预,跳过错误才能继续 跳过错误有两种方式: 1.跳过指定数量的事务 mysql>stop slave;  m ...

  4. 关于N个小球放M个盒子解答

    以下是关于关于N个小球放M个盒子的几种情况的解答,蛮详细的(来自博友的)  求精:关于N个小球放M个盒子解答 - chensmiles的日志 - 网易博客http://chensmiles.blog. ...

  5. linux ssh密钥认证, 免密码登陆

    1. 客户端生成密钥 # mkdir ~/.ssh # chmod ~/.ssh # cd ~/.ssh 生成RSA密钥 # ssh-keygen -t rsa (然后连续三次回车) 2. 把公钥传到 ...

  6. MUI离线原生打包,利用Android Studio进行原生打包MUI项目

    首先从官网http://www.dcloud.io/ 下载HBuilder,用该软件创建一个HTML5的移动APP项目,具体可去官网查看相应的文档. 接下来就是如何将写好的HBuilder引入到我们的 ...

  7. 《DSP using MATLAB》Problem 8.31

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  8. TKmybatis的框架介绍及使用方法

    最近项目使用了SpringBoot+TKMytis框架,期间遇到一些问题,顺便记一下. 一.框架配置 配置的话非常简单,我用的是SpringBoot,直接引入: <dependency> ...

  9. 分布式配置中心(Spring Cloud Config)

    真有意思的一个问题,我先把我遇到的写一次 ,今天学习Spring Cloud Config  新建了三个module ,eureka-server,config-server,config-clien ...

  10. Python开发第三方必备工具

      <wiz_tmp_tag id="wiz-table-range-border" contenteditable="false" style=&quo ...