题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10)

很显然,推式子。

$\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$

=$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}ijd[gcd(i,j)==d]$

=$\sum_{d=1}^{n}d^3\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{d}\rfloor}ij[gcd(i,j)==d]$

=$\sum_{d=1}^{n}d^3\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\mu(i)i^2S({\lfloor \frac{n}{id}\rfloor})^2,S(n)=(n+1)*n/2$

=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})^2\sum_{d|T}d^3(\frac{T}{d})^2\mu(\frac{T}{d})$

=$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})^2T^2\sum_{d|T}d\mu(\frac{T}{d})$

由$\mu*id=\varphi $可得$\sum_{T=1}^{n}S({\lfloor \frac{n}{T}\rfloor})^2T^2\varphi (T)$

前面整除分块,只需要预处理$T^2\varphi(T)$ 前缀和即可。

由于n有1e10那么大,就需要用到非线性的求前缀和的方法,这里用到杜教筛,见代码。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e6+;
int pri[N],tot,phi[N],sum[N];
bool p[N];
ll n,MD,ans,inv6;
unordered_map<ll,int> w;
void init() {
phi[]=;
for(int i=;i<N;i++) {
if(!p[i]) phi[i]=i-,pri[tot++]=i;
for(int j=;j<tot&&pri[j]*i<N;j++) {
p[i*pri[j]]=true;
if(i%pri[j]==) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=;i<N;i++) sum[i]=(sum[i-]+1LL*i*i%MD*phi[i]%MD)%MD;
}
ll pre_3(ll x) {
x%=MD;
ll t=x*(x+)/%MD;
return t*t%MD;
}
ll pre_2(ll x) {
x%=MD;
return x*(x+)%MD*(*x+)%MD*inv6%MD;
}
int quick_pow(int x,int y) {
int ans=;
while(y) {
if(y&) ans=1LL*ans*x%MD;
y>>=;
x=1LL*x*x%MD;
}
return ans;
}
int cal(ll x) {
if(x<N) return sum[x];
if(w[x]) return w[x];
ll ans=pre_3(x);
for(ll l=,r;l<=x;l=r+) {
r=x/(x/l);
ans=(ans-(pre_2(r)-pre_2(l-)+MD)%MD*cal(x/l)%MD+MD)%MD;
}
return w[x]=ans;
}
int main() {
scanf("%lld%lld",&MD,&n);
inv6=quick_pow(,MD-),init();
for(ll l=,r;l<=n;l=r+) {
r=n/(n/l);
ans=(ans+pre_3(n/l)*(cal(r)-cal(l-)+MD)%MD)%MD;
}
printf("%lld\n",ans);
return ;
}

洛谷 P3768 简单的数学题 (莫比乌斯反演)的更多相关文章

  1. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  2. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  3. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  4. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  5. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  6. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  7. 洛谷P3768 简单的数学题

    解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...

  8. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  9. 洛谷P3768 简单的数学题解题报告

    $$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...

随机推荐

  1. Python之路,Day1 - Python基础1(转载Alex)

    本节内容 Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据类型初识 数据运算 表达式if ...else语 ...

  2. python 为 class 添加新的属性和方法

    通过继承: >>> class Point(namedtuple('Point', ['x', 'y'])): ... __slots__ = () ... @property .. ...

  3. 桥接模式(Bridge、Implementor)(具体不同平台日志记录,抽象与实现分离)

    桥接模式(Bridge Pattern):将抽象部分与它的实现部分分离,使它们都可以独立地变化.它是一种对象结构型模式,又称为柄体(Handle and Body)模式或接口(Interface)模式 ...

  4. 2019-8-30-BAT-脚本判断当前系统是-x86-还是-x64-系统

    title author date CreateTime categories BAT 脚本判断当前系统是 x86 还是 x64 系统 lindexi 2019-08-30 08:47:40 +080 ...

  5. 啊啊我找不到web.xml怎么办呀~~

    创建Dymamic Web Project的时候不要忘记勾选这玩意(about servlet) 其实还有一个办法就是右键点击你的web项目名--->Java EE Tools-->Gen ...

  6. 通过游戏学python 3.6 第一季 第一章 实例项目 猜数字游戏--核心代码 可复制直接使用 娱乐 可封装 函数

    本文实例讲述了python实现的简单猜数字游戏.分享给大家供大家参考.具体如下: 给定一个1-99之间的数,让用户猜数字,当用户猜错时会提示用户猜的数字是过大还是过小,知道用户猜对数字为止,猜对数字用 ...

  7. SPOJ 2916 GSS5 - Can you answer these queries V

    传送门 解题思路 和GSS1相似,但需要巨恶心的分类讨论,对于x1<=y1< x2< =y2 这种情况 , 最大值应该取[x1,y1]的右端最大+[y1+1,x2-1]的和+[x2, ...

  8. ESB介绍

    通过使用ESB,可以在几乎不更改代码的情况下,以一种无缝的非侵入方式使企业已有的系统具有全新的服务接口,并能够在部署环境中支持任何标准.更重要的是,充当“缓冲器”的ESB(负责在诸多服务之间转换业务逻 ...

  9. Codeforces 222B 数组行列交换操作

    /*做完这题发现自己好水,太伤人了.... 不过还是学到一些,如果直接暴力模拟的话肯定是TLM.. 所以要用虚拟数组来分别保存当前数组的每行没列在初始数组中的位置...*/ #include<c ...

  10. 使用 prerender 实现 SEO

    server { listen 80; server_name www.umount.com; access_log /var/log/nginx/livefrontend/access.log LF ...