正解:树剖+线段树

解题报告:

传送门$QwQ$

看到$dep[lca]$啥的就想到之前托腮腮$CSP$模拟$D1T3$的那个套路,,,

然后试下这个想法,于是$dep[lca(x,y)]=\sum_{i=1}^{\infty}[i\leq dep[lca(x,y)]]$,就可以是,从$x$到根全部加一然后查询$y$到根的权值和.

现在变成$\sum_{i=l}^r dep[lca(i,x)]$,那就$l$到$r$到根全加一然后查询$x$到根的权值和.

显然考虑差分呗?就$1$到$r$全加一的权值和减去$1$到$l-1$全加一的权值和.

于是就从$1$枚举到$n$每次从当前节点到根全加一,顺便维护下这个答案就完事$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lowbit(x) (x&(-x))
#define rg register
#define gc getchar()
#define ls(x) (x<<1)
#define rs(x) ((x<<1)|1)
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=+,mod=;
int n,q,dfn[N],sz[N],top[N],fa[N],as[N],hs[N],dfn_cnt,tr[N<<],ad[N<<];
vector<int>son[N];
struct node{int id,x,op;};
vector<node>V[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void add(ri &x,ri y){x+=y;if(x>=mod)x-=mod;if(x<)x+=mod;}
il void dfs1(ri x)
{
sz[x]=;ri siz=son[x].size();
rp(i,,siz-){dfs1(son[x][i]),sz[x]+=sz[son[x][i]];if(sz[son[x][i]]>sz[hs[x]])hs[x]=son[x][i];}
}
il void dfs2(ri x,ri tp)
{
top[x]=tp;dfn[x]=++dfn_cnt;if(hs[x])dfs2(hs[x],tp);ri siz=son[x].size();
rp(i,,siz-)if(son[x][i]^hs[x])dfs2(son[x][i],son[x][i]);
}
il void pushdown(ri x,ri l,ri r)
{
if(!ad[x])return;
ri mid=(l+r)>>;
add(tr[ls(x)],1ll*ad[x]*(mid-l+)%mod),add(tr[rs(x)],1ll*ad[x]*(r-mid)%mod);
ad[ls(x)]+=ad[x],ad[rs(x)]+=ad[x];ad[x]=;
}
void modify(ri x,ri l,ri r,ri to_l,ri to_r)
{
if(to_l<=l && r<=to_r){add(tr[x],r-l+);add(ad[x],);return;}
pushdown(x,l,r);
ri mid=(l+r)>>;if(mid>=to_l)modify(ls(x),l,mid,to_l,to_r);if(mid<to_r)modify(rs(x),mid+,r,to_l,to_r);
tr[x]=(tr[ls(x)]+tr[rs(x)])%mod;
}
int query(ri x,ri l,ri r,ri to_l,ri to_r)
{
if(to_l<=l && r<=to_r)return tr[x];
pushdown(x,l,r);ri mid=(l+r)>>,ret=;
if(mid>=to_l)ret=query(ls(x),l,mid,to_l,to_r);;if(mid<to_r)add(ret,query(rs(x),mid+,r,to_l,to_r));
return ret;
} int main()
{
freopen("4211.in","r",stdin);freopen("4211.out","w",stdout);
n=read();q=read();rp(i,,n)son[fa[i]=read()+].push_back(i);dfs1();dfs2(,);
rp(i,,q){ri l=read(),r=read()+,x=read()+;V[l].push_back((node){i,x,-});V[r].push_back((node){i,x,});}
rp(i,,n)
{
ri nw=i;while(nw)modify(,,n,dfn[top[nw]],dfn[nw]),nw=fa[top[nw]];
for(auto j:V[i])
{nw=j.x;while(nw)add(as[j.id],j.op*query(,,n,dfn[top[nw]],dfn[nw])),nw=fa[top[nw]];}
}
rp(i,,q)printf("%d\n",as[i]);
return ;
}

洛谷$P4211\ [LNOI2014]\ LCA$ 树链剖分+线段树的更多相关文章

  1. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  2. 【bzoj3626】[LNOI2014]LCA 树链剖分+线段树

    题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...

  3. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  4. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  5. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  6. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  7. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  8. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  9. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  10. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

随机推荐

  1. Flask学习之八 关注、联系人和好友

    英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-viii-followers-contacts-and- ...

  2. asp.net抓取网页html源代码失败 只因UserAgent作怪

    asp.net抓取网页html源代码,我想对于任何一个asp.net程序员来说都不再陌生,这是一个非常简单容易就能实现的功能.下面便是一个通用的asp.net获得网页源代码的程序. 首先引用 usin ...

  3. Python中json和eval的区别

    >>> import json >>> s = '{"one":1,"two":2}' >>> json. ...

  4. tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...

  5. 即插即用,基于阿里云Ganos快速构建云上开源GIS方案

    对于轻量级GIS应用,选择具备时空能力的云上数据库再搭配开源GIS软件,能够快速构建稳定.廉价.实用的GIS解决方案.Ganos是阿里云自研时空基础设施(PaaS层)的核心引擎,该引擎整合了云上异构计 ...

  6. 接管SpringBoot对Activiti的数据源自动配置

    SpringBoot的自动配置真的让人又爱又恨,但还是爱更多一点. SpringBoot想要帮我们自动配置好一切,但是有时候配置的却并不是我们需要的,甚至有时候会默默的坑我们. 我的项目是一个多数据源 ...

  7. 学习PHP好,还是Python好呢?

    首先简单介绍一下Python. Python在出现以来,已经有数以千计基于这项技术的网站和软件项目,Python因其独有的特点从众多开发语言中脱颖而出,深受世界各地的开发者喜爱. 下面,我们列举了Py ...

  8. poj 3181 Dollar Dayz(完全背包)

    Dollar Dayz Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5419   Accepted: 2054 Descr ...

  9. iptables [-j target/jump] 常用的处理动作

    -j 参数用来指定要进行的处理动作,常用的处理动作包括:ACCEPT.REJECT.DROP.REDIRECT.MASQUERADE.LOG.DNAT.SNAT.MIRROR.QUEUE.RETURN ...

  10. PHP redis安装扩展

    命令: 查看php版本:PHP -v 查看php安装的扩展:PHP -m php扩展开发包(包括phpize,php -config):yum install php-devel which phpi ...