P4075 [SDOI2016]模式字符串
总结
P4075 [SDOI2016]模式字符串
题目描述
给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母。
Alice希望知道,有多少对结点<u,v>满足T上从u到V的最短路径形成的字符串可以由模式串S重复若干次得到?
这里结点对<u,v>是有序的,也就是说<u,v>和<v,u>需要被区分。
所谓模式串的重复,是将若干个模式串S依次相接(不能重叠)。例如当S=PLUS的时候,重复两次会得到PLUSPLUS,重复三次会得到PLUSPLUSPLUS,同时要注恿,重复必须是整数次的。例如当S=XYXY时,因为必须重复整数次,所以XYXYXY不能看作是S重复若干次得到的。
输入格式
每一个数据有多组测试,
第一行输入一个整数C,表示总的测试个数。
对于每一组测试来说:
第一行输入两个整数,分别表示树T的结点个数n与模式长度m。结点被依次编号为1到n,
之后一行,依次给出了n个大写字母(以一个长度为n的字符串的形式给出),依次对应树上每一个结点上的字符(第i个字符对应了第i个结点)。
之后n-1行,每行有两个整数u和v表示树上的一条无向边,之后一行给定一个长度为m的由大写字母组成的字符串,为模式串S。
输出格式
给出C行,对应C组测试。
每一行输出一个整数,表示有多少对节点<u,v>满足从u到v的路径形成的字符串恰好是模式串的若干次重复.
输入输出样例
输入 #1
1
11 4
IODSSDSOIOI
1 2
2 3
3 4
1 5
5 6
6 7
3 8
8 9
6 10
10 11
SDOI
输出 #1
5
说明/提示
1<=C<=10,3<=∑N<=1000000,3<=∑M<=1000000
看到这题 ,弱弱的我的第一反应就是 \(n^3\) 暴力大枚举 , 之后幸亏迷途知返,想了一个\(n^2\) 的。。。。。
就不讨论我的弱了,
正解
点分治 , 用两个数组 \(f , g\) 分别表示前缀 , 后缀长为 i 的点的数量 , 之后就是按照点分治的模板 , 改改就好了 , 至于怎么判断是否相同,hash就行了。
我还是比较弱 , 这种题也就算个点分治的板子 , 以后得多练一些点分治的题。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N = 1010000;
typedef unsigned long long ull;
inline int read()
{
register int x = 0; register char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return x;
}
int n , m , cnt , root , all , ans;
int d[N] , head[N] , Max[N] , siz[N] , vis[N] , sf[N] , sg[N] , f[N] , g[N];
char a[N] , b[N];
ull t1[N] , t2[N] , bs[N];
struct edge{int v , nex; } e[N<<1];
inline void add(int u , int v) { e[++cnt].v = v; e[cnt].nex = head[u]; head[u] = cnt; return ; }
void getroot(int x , int fa)
{
siz[x] = 1; Max[x] = 0;
for(int i = head[x] , v ; i ; i = e[i].nex)
{
v = e[i].v; if(v == fa || vis[v]) continue;
getroot(v , x); siz[x] += siz[v];
Max[x] = max(Max[x] , siz[v]);
}
Max[x] = max(Max[x] , all - siz[x]);
if(Max[root] > Max[x]) root = x;
return ;
}
int getdep(int x , int fa , int dep , ull hs)
{
hs = hs * 1331 + a[x]; int tmp = 1;
if(hs == t1[dep]) f[(dep - 1) % m + 1]++ , ans += sg[m - (dep - 1) % m];
if(hs == t2[dep]) g[(dep - 1) % m + 1]++ , ans += sf[m - (dep - 1) % m];
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(v == fa || vis[v]) continue;
tmp = max(tmp , getdep(v , x , dep + 1 , hs) + 1);
}
return tmp;
}
void dfs(int x)
{
sf[1] = sg[1] = 1; vis[x] = 1; int tmp = 0;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(vis[v]) continue;
int k = min(m , getdep(v , x , 2 , a[x]) + 1); tmp = max(tmp , k);
for(int j = 1 ; j <= k ; ++j) sf[j] += f[j] , sg[j] += g[j] , f[j] = g[j] = 0;
}
for(int i = 1 ; i <= tmp ; ++i) sf[i] = sg[i] = 0;
for(int i = head[x] ; i ; i = e[i].nex)
if(!vis[e[i].v])
{
all = siz[e[i].v]; root = 0;
getroot(e[i].v , x); dfs(root);
}
return ;
}
void solve()
{
n = read(); m = read();
scanf("%s",a + 1);
for(int i = 1 , u , v ; i < n ; ++i)
{
u = read(); v = read();
add(u , v); add(v , u);
}
scanf("%s",b + 1); bs[0] = 1;
for(int i = 1 ; i <= n ; ++i) // hash
{
bs[i] = bs[i-1] * 1331;
t1[i] = t1[i-1] + bs[i-1] * b[(i-1) % m + 1];
t2[i] = t2[i-1] + bs[i-1] * b[m - (i-1) % m];
}
Max[0] = 1e9; root = 0; all = n; getroot(1 , 0); dfs(root);
printf("%d\n" , ans);
for(int i = 1 ; i <= n ; ++i) head[i] = 0 , vis[i] = 0; cnt = 0; ans = 0;
return ;
}
int main()
{
// freopen("A.in" , "r" , stdin);
// freopen("A.out" , "w" , stdout);
int T = read(); while(T --) solve();
fclose(stdin); fclose(stdout); return 0;
}
/*
2
11 4
IODSSDSOIOI
1 2
2 3
3 4
1 5
5 6
6 7
3 8
8 9
6 10
10 11
SDOI
11 4
IODSSDSOIOI
1 2
2 3
3 4
1 5
5 6
6 7
3 8
8 9
6 10
10 11
SDOI
*/
P4075 [SDOI2016]模式字符串的更多相关文章
- 【BZOJ4598】[Sdoi2016]模式字符串 树分治+hash
[BZOJ4598][Sdoi2016]模式字符串 Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每 ...
- bzoj4598: [Sdoi2016]模式字符串
Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有 ...
- bzoj 4598: [Sdoi2016]模式字符串
题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母. Alice希望知道,有多少对结点&l ...
- BZOJ4598 [Sdoi2016]模式字符串 【点分治 + hash】
题目 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有多少对结点< ...
- [SDOI2016]模式字符串
Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有多 ...
- [LOJ2065] [SDOI2016]模式字符串
题目链接 洛谷:https://www.luogu.org/problemnew/show/P4075 LOJ:https://loj.ac/problem/2065 Solution 这种题看起来就 ...
- BZOJ.4598.[SDOI2016]模式字符串(点分治 Hash)
LOJ BZOJ 洛谷 点分治.考虑如何计算过\(rt\)的答案. 记\(pre[i]\)表示(之前的)子树内循环匹配了\(S\)的前缀\(i\)的路径有多少,\(suf[i]\)表示(之前的)子树内 ...
- Bzoj4598: [Sdoi2016]模式字符串 点分治 哈希
国际惯例的题面:这种关于树上路径的题,我也没什么好办法,只好点分治.考虑当前分治重心为root,如何统计经过分治重心的路径的答案.我们令prf[i]表示某个点到root的路径(不含root)已经循环匹 ...
- BZOJ4598: [Sdoi2016]模式字符串(点分治 hash)
题意 题目链接 Sol 直接考虑点分治+hash匹配 设\(up[i]\)表示\(dep \% M = i\)的从下往上恰好与前\(i\)位匹配的个数 \(down\)表示\(dep \% M = i ...
随机推荐
- Angular 从入坑到挖坑 - Angular 使用入门
一.Overview angular 入坑记录的笔记第一篇,完成开发环境的搭建,以及如何通过 angular cli 来创建第一个 angular 应用.入坑一个多星期,通过学习官方文档以及手摸手的按 ...
- latex使用总结
1 输入双引号以及单引号: 双引号:按两下 Tab键上方的键, 再按两下单引号键. 单引号:按一下Tab键上方的键,再按一下单引号键. 原文地址 2 时间复杂度的O写法: $\mathcal{O}$ ...
- 题解【Luogu P6102 谔运算】
\[ \texttt{Description} \] 给出一个长度为 \(n\) 的数列 \(a\),求 \(\sum\limits_{i=1}\limits^{n}\sum\limits_{j=1} ...
- Spring事务中的事务传播行为
1.支持当前事务: TransactionDefinition.PROPAGATION_REQUIRED:如果当前存在事务,则加入该事务:如果当前没有事务,则创建一个新的事务. Transaction ...
- 【题解】删数问题(Noip1994)
题目 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 11506 通过数: 3852 [题目描述] 输入一个高精度的正整数n,去掉其中任意s个数字后剩下的数字按原左右次序组成一个新 ...
- zip压缩包伪加密技术
一个 ZIP 文件由三个部分组成: 压缩源文件数据区 + 压缩源文件目录区 + 压缩源文件目录结束标志 压缩源文件数据区: 50 4B 03 04:这是头文件标记(0x04034b50) 14 00: ...
- Spring Cloud(七):服务网关zuul过滤器
上文介绍了Zuul的基本使用与路由功能,本文接着介绍Zuul的核心概念 -- Zuul过滤器(filter). Zuul的功能基本通过Zuul过滤器来实现(类比于Struts的拦截器,只是Struts ...
- [Effective Java 读书笔记] 第三章类和接口 第二十-二十一条
第二十条 用函数对象表示策略 函数指针(JAVA的函数指针,是指使用对象的引用来作为参数,传递给另一个对象的方法)主要用来实现策略模式,为了在JAVA中实现这种模式,要申明一个接口来表示该策略,并为每 ...
- Python3 (五)函数应用
一.认识函数 在命令行中查看内置函数的方法: 1.先在命令行里输入python 2.help(函数) 二.函数的定义及运行特点 1.函数基本定义: def funcname(parameter_lis ...
- Vue路由(vue-router)
一.介绍 1.vue-router安装 官方文档:https://router.vuejs.org/zh/installation.html下载地址:https://unpkg.com/vue-rou ...