Fhq Treap [FhqTreap 学习笔记]
众所周知 Fhq Treap 是 fhq 神仙研究出来的平衡树…
具体实现
每个点实现一个 \(\text{rnd}\) 表示 rand 的值 为什么要 rand 呢
是为了保证树高为 \(\log n\) 从而保证复杂度…
FHQ Treap的核心操作是split和merge,其他的操作均以这两个操作为基础进行。
下面所述操作的数据如下所示:
int rt = 0 , cnt = 0 , a[N] , sz[N] , rnd[N] , ch[N][2] ;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
ls 指的是左儿子 rs 指的是右儿子…
val表示节点的权值 用来维护二叉搜索树的性质,rnk表示节点的权值 用来维护堆的性质。
sz 表示节点大小(包括自身)
split
split 实现的操作大概是 把一棵树分成俩…然后左边的值小于等于 \(k\) 右边的值大于 \(k\)
如果你 split(rt , k , x , y)
那么你就把 rt 分成两个部分 \(x\) ,\(y\) 了 其中 \(x\) 的子树的 \(val \leq k\) , \(y\) 的子树的 \(val > k\)
void split (int cur , int k , int & u , int & v) {
if(! cur) { u = v = 0 ; return ; }
if(a[cur] <= k) { u = cur ; split(rs(u) , k , rs(u) , v) ; }
else { v = cur ; split(ls(v) , k , u , ls(v)) ; }
pushup(cur) ;
}
代码如上 如果小于这个则分给左子树 大于就分给右边……
merge
merge的操作就是合并一下根节点和新建节点 然后保留根/替换根(rnd决定)
反正是随机合并 期望树高 \(\log n\)
int merge (int u , int v) {
if(! u || ! v) return u | v ;
if(rnd[u] < rnd[v]) { rs(u) = merge(rs(u) , v) ; pushup(u) ; return u ; }
else { ls(v) = merge(u , ls(v)) ; pushup(v) ; return v ; }
}
kth
Treap 都满足一个堆的性质… 所以显然…
可以按照 sz 来找 kth 递归/非递归都可以啊…
int kth(int u , int k) {
if(k <= sz[ls(u)]) return kth(ls(u) , k) ;
if(sz[ls(u)] + 1 == k) return a[u] ;
return kth(rs(u) , k - sz[ls(u)] - 1) ;
}
递归写法
rank
rank的话就分离一个 \(val = k-1\) 的子树…然后求这个子树的 sz 就知道 rank 了啊
int rank(int k) {
int x , y , res ; split(rt , k - 1 , x , y) ;
res = sz[x] + 1 ; rt = merge(x , y) ; return res ;
}
其他操作不讲了
#include <cstdio>
#include <cstdlib>
using ll = long long ;
using namespace std ;
int read() {
int x = 0 , f = 1 ; char c = getchar() ;
while(c < '0' || c > '9') { if(c == '-') f = -1 ; c = getchar() ; }
while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return x * f ;
}
template < class T > void print(T x , char c = '\n') {
static char _st[100] ; int _stp = 0 ;
if(x == 0) { putchar('0') ; }
if(x < 0) { putchar('-') ; x = -x ; }
while(x) { _st[++ _stp] = (x % 10) ^ 48 ; x /= 10 ; }
while(_stp) { putchar(_st[_stp --]) ; }
putchar(c) ;
}
int q ;
const int N = 1e5 + 10 ;
class Fhq {
public:
int rt = 0 , cnt = 0 , a[N] , sz[N] , rnd[N] , ch[N][2] ;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
int newNode (int x) { sz[++ cnt] = 1 ; a[cnt] = x ; rnd[cnt] = rand() ; return cnt ; }
void pushup (int u) { sz[u] = sz[ls(u)] + sz[rs(u)] + 1 ; }
int merge (int u , int v) {
if(! u || ! v) return u | v ;
if(rnd[u] < rnd[v]) { rs(u) = merge(rs(u) , v) ; pushup(u) ; return u ; }
else { ls(v) = merge(u , ls(v)) ; pushup(v) ; return v ; }
}
void split (int cur , int k , int & u , int & v) {
if(! cur) { u = v = 0 ; return ; }
if(a[cur] <= k) { u = cur ; split(rs(u) , k , rs(u) , v) ; }
else { v = cur ; split(ls(v) , k , u , ls(v)) ; }
pushup(cur) ;
}
void insert(int k) {
int x , y ; split(rt , k , x , y) ; rt = merge(merge(x , newNode(k)) , y) ;
}
void erase(int k) {
int x , y , z ; split(rt , k , x , z) ; split(x , k - 1 , x , y) ;
y = merge(ls(y) , rs(y)) ; rt = merge(merge(x , y) , z) ;
}
int kth(int u , int k) {
if(k <= sz[ls(u)]) return kth(ls(u) , k) ;
if(sz[ls(u)] + 1 == k) return a[u] ;
return kth(rs(u) , k - sz[ls(u)] - 1) ;
}
int rank(int k) {
int x , y , res ; split(rt , k - 1 , x , y) ;
res = sz[x] + 1 ; rt = merge(x , y) ; return res ;
}
int pre(int k) {
int x , y , res ; split(rt , k - 1 , x , y) ;
res = kth(x , sz[x]) ; rt = merge(x , y) ; return res ;
}
int suf(int k) {
int x , y , res ; split(rt , k , x , y) ;
res = kth(y , 1) ; rt = merge(x , y) ; return res ;
}
} T ;
int main() {
srand(19260817) ;
q = read() ;
while(q --) {
int opt = read() , x = read() ;
if(opt == 1) { T.insert(x) ; }
if(opt == 2) { T.erase(x) ; }
if(opt == 3) { print(T.rank(x)) ; }
if(opt == 4) { print(T.kth(T.rt , x)) ; }
if(opt == 5) { print(T.pre(x)) ; }
if(opt == 6) { print(T.suf(x)) ; }
}
return 0 ;
}
同样的 fhq 不仅仅是可以用来按 \(val\) 分离 还可以用 \(size\) 分离成两棵树 (文艺平衡树代码)
#include <cstdio>
#include <cstdlib>
using ll = long long ;
using namespace std ;
int read() {
int x = 0 , f = 1 ; char c = getchar() ;
while(c < '0' || c > '9') { if(c == '-') f = -1 ; c = getchar() ; }
while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return x * f ;
}
template < class T > void print(T x , char c = '\n') {
static char _st[100] ; int _stp = 0 ;
if(x == 0) { putchar('0') ; }
if(x < 0) { putchar('-') ; x = -x ; }
while(x) { _st[++ _stp] = (x % 10) ^ 48 ; x /= 10 ; }
while(_stp) { putchar(_st[_stp --]) ; }
putchar(c) ;
}
int n , q ;
const int N = 1e5 + 10 ;
class Fhq {
public:
int ch[N][2] , rnd[N] , a[N] , sz[N] , rt = 0 , cnt = 0 ;
bool rev[N] ;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
void pushup(int u) { sz[u] = sz[ls(u)] + sz[rs(u)] + 1 ; }
void swap(int & x , int & y) { x ^= y ^= x ^= y ; }
void pushr(int u) { swap(ls(u) , rs(u)) ; rev[u] ^= 1 ; }
void pushdown(int u) {
if(! rev[u]) return ;
if(ls(u)) pushr(ls(u)) ;
if(rs(u)) pushr(rs(u)) ;
rev[u] ^= 1 ;
}
int merge(int x , int y) {
if(! x || ! y) return x | y ;
if(rnd[x] < rnd[y]) {
pushdown(x) ;
rs(x) = merge(rs(x) , y) ;
pushup(x) ;
return x ;
}
pushdown(y) ;
ls(y) = merge(x , ls(y)) ;
pushup(y) ;
return y ;
}
void split(int cur , int k , int & u , int & v) {
if(! cur) { u = v = 0 ; return ; }
pushdown(cur) ;
if(sz[ls(cur)] < k) {
u = cur ;
split(rs(u) , k - sz[ls(cur)] - 1 ,rs(u) , v) ;
}
else {
v = cur ;
split(ls(v) , k , u , ls(v)) ;
}
pushup(cur) ;
}
void reverse(int l , int r) {
int x , y , z ; x = y = z = 0 ;
split(rt , l - 1 , x , y) ;
split(y , r - l + 1 , y , z) ;
pushr(y) ;
rt = merge(merge(x , y) , z) ;
}
int newNode(int x) { sz[++ cnt] = 1 ; a[cnt] = x ; rnd[cnt] = rand() ; return cnt ; }
void push_back(int x) { rt = merge(rt , newNode(x)) ; }
void dfs(int u) {
pushdown(u) ;
if(ls(u)) dfs(ls(u)) ;
print(a[u] , ' ') ;
if(rs(u)) dfs(rs(u)) ;
}
} T ;
int main() {
srand(19260817) ;
n = read() ; q = read() ;
for(int i = 1 ; i <= n ; i ++) T.push_back(i) ;
while(q --) {
int l = read() , r = read() ;
T.reverse(l , r) ;
}
T.dfs(T.rt) ;
return 0 ;
}
自行理解 我顺便解释一下子 fhq是一种按中序遍历建树的玩意 所以如果需要输出就直接按中序遍历输出了 ovo
如果有没看懂的欢迎评论 quq
Fhq Treap [FhqTreap 学习笔记]的更多相关文章
- 「FHQ Treap」学习笔记
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...
- [普通平衡树treap]【学习笔记】
3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 9046 Solved: 3840[Submit][Sta ...
- 可持久化fhq-treap学习笔记
目录 可持久化fhq-treap----- 支持查询历史版本的非旋treap 先看看为啥他可以可持久化 过程 别的 注意&&出错&&吐槽 模板->luoguP38 ...
- FHQ-Treap学习笔记
平衡树与FHQ-Treap 平衡树(即平衡二叉搜索树),是通过一系列玄学操作让二叉搜索树(BST)处于较平衡的状态,防止在某些数据下退化(BST在插入值单调时,树形不平衡,单次会退化成 \(\math ...
- 树堆(Treap)学习笔记 2020.8.12
如果一棵二叉排序树的节点插入的顺序是随机的,那么这样建立的二叉排序树在大多数情况下是平衡的,可以证明,其高度期望值为 \(O( \log_2 n )\).即使存在一些极端情况,但是这种情况发生的概率很 ...
- fhq treap 学习笔记
序 今天心血来潮,来学习一下fhq treap(其实原因是本校有个OIer名叫fh,当然不是我) 简介 fhq treap 学名好像是"非旋转式treap及可持久化"...听上去怪 ...
- FHQ treap学习(复习)笔记
.....好吧....最后一篇学习笔记的flag它倒了..... 好吧,这篇笔记也鸽了好久好久了... 比赛前刷模板,才想着还是补个坑吧... FHQ,这个神仙(范浩强大佬),发明了这个神仙的数据结构 ...
- 「学习笔记」 FHQ Treap
FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...
- fhq treap抄袭笔记
目录 碎碎念 点一下 注意!!! 模板 fhq treap 碎碎念 我咋感觉合并这么像左偏树呢 ps:难道你们的treap都是小头堆的吗 fhq真的是神人 现在看以前学的splay是有点恶心,尤其是压 ...
随机推荐
- python笔记15
今日内容 模块知识 内置模块 time datetime json 其他 内容回顾 & 作业题 重要知识点 构造字典和函数对应关系,避免重复的if else a=1 b=2 ==> a, ...
- [求解!!!] springboot在运行web项目时报错
2017-05-10 17:40:54.343 INFO 4852 --- [ main] ationConfigEmbeddedWebApplicationContext : Refreshing ...
- Codeforces 1092 D2 Great Vova Wall (Version 2) (栈)
题意: 给一排砖,每列的高度$a_i$,问是否可以放1*2的砖,使得n列高度一样,砖只能横着放 思路: 每两个相邻的高度相同的砖可以变成大于等于它的高度的任意高度 所以像这样的 123321 是不满足 ...
- Pycharm学习记录---同一目录下无法import明明已经存在的.py文件
转自:https://blog.csdn.net/l8947943/article/details/79874180 问题描述: 如图:同目录下明明存在相应文件,在导入时却出现带有红色波浪线,说没有相 ...
- [Redis-CentOS7]Redis事务操作(六)
事务操作 隔离操作: 事务中所有的命令都会序列化,按顺序执行,不会被其他命令打扰 原子操作: 事务中所有的命令要么全部执行,要么全部不执行 添加事务并执行 127.0.0.1:6379> MUL ...
- 普通台式机装centos7系统
一.环境 台式机配置如下: 配置:CPU -i5-7400 内存:8G 硬盘:1T 原装系统: win7 64x 使用软碟通刻录U盘做系统启动盘,教程: 教你用UltraISO+U盘制作启动盘和安装各 ...
- vue自带的实例属性和方法($打头)
Vue 实例内置了一些有用的实例属性与方法.它们都有前缀 $,以便与用户定义的属性区分开来.例如: var data = { a: 1 } var vm = new Vue({ el: '#examp ...
- 怎么用IDEA快速查看类图关系
做Java开发的,现在普遍都用上idea了.可以说,idea是当之无愧的Java开发神器.如果,你现在还没用idea,那肯定是你还没有感受过它的强大. 好了,话不多说,今天的主题主要是教大家怎么通过i ...
- this关键字和static关键字
this关键字 普通方法中,this总是指向调用该方法的对象. 构造方法中,this总是指向正要初始化的对象. this区分成员变量和全局变量的作用,在当前类中可以省略. this的常用方法: 让类中 ...
- C# 小游戏-拼图魔方【Game Puzzle】
工作闲暇之余去逛了逛CodeProject,刚好现有项目主要用到就是winform,浏览了下照片,找到上周带着蛋挞打疫苗回家的照片,于是新生一记,如何把这些图片玩起来~ 80后应该都有印象,小时候有种 ...