Uva12169(扩展欧几里得)

题意:

已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列

解法:

令$ x_2=(ax_1+b)mod 10001$,$x_3= (ax_2+b)mod 10001$

解得:$x_3+10001k=a^{2}x_1+( a + 1) b$

移像得:$x_3 - a^{2}x_1=( a + 1) b - 10001k$

把 $b$ 和$(-k)$看成是未知数,这就是求解一个 $ax+by=c$ 的方程,扩展欧几里得可解

见代码

 /*
由于a的范围只有1e5,所以我们可以直接枚举a的所有值,
然后根据公式求出b的值,之后根据a和b的值递推所有的原数列的值
期间会用到扩展欧几里得解线性方程组
如果有不一样的,说明就不存在,重来
*/
#include<cstdio>
using namespace std;
typedef long long ll;
const int mod = ;
ll f[*], n; //扩展欧几里得解线性方程组
ll exgcd(ll a, ll b, ll &x, ll &y){
if (b == ){
x = , y = ;
return a;
}
ll r = exgcd(b, a%b, x, y);
ll t = x;
x = y;
y = t - a / b*y;
return r;
} inline bool linear_equation(ll a, ll b, ll c, ll &x, ll &y){
ll d = exgcd(a, b, x, y);
if (c%d) return false;
ll k = c / d;
x *= k; y *= k; //求得的只是其中一组解
return true;
} bool check(ll a,ll b) {
for (int i = ; i <= n * ; i++) {
ll now = (a*f[i - ] + b) % mod;
if (i & ) {
if (now == f[i]) continue;
else return false;
}
else f[i] = now;
}
return true;
} int main() {
scanf("%d", &n);
for (int i = ; i <= n * ; i += ) scanf("%lld", &f[i]);
for (ll a = ; a <= ; a++) {
ll b, k;
if (!linear_equation(a + , mod, f[] - a*a*f[], b, k))continue;
if (check(a, b)) break;
}
for (int i = ; i <= * n; i+=) {
printf("%lld\n", f[i]);
}
return ;
}

Uva12169 扩展欧几里得模板的更多相关文章

  1. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  2. 扩展欧几里得模板&逆元求法

    拓展欧几里得: 当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d : d = gcd ( a , b ) = gcd ( b , a m ...

  3. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  4. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  5. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. POJ1061 青蛙的约会(扩展欧几里得)

    题目链接:http://poj.org/problem?id=1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  7. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  8. 51nod1256 乘法逆元【扩展欧几里得】

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...

  9. 例10-2 uva12169(扩展欧几里得)

    题意:已知xi=(a*xi-1+b) mod 10001,且告诉你x1,x3.........x2*t-1,让你求出其偶数列 思路: 枚举a,然后通过x1,x3求出b,再验证是否合适 1.设a, b, ...

随机推荐

  1. 使用自环接口的UDP服务器和客户端

    import argparse,socket from datetime import datetime MAX_BYTES = 65535 def server(port): sock = sock ...

  2. HDU_1232_并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1232 第一道并查集,挺好理解的,初始化,查找根节点,连接,路径压缩. #include<iostream& ...

  3. BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)

    题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...

  4. java9String类简单了解

    public class jh_01_String类简单了解 { public static void main(String[] args) { /* * 函数:完成特定功能的代码块. * next ...

  5. oracle面试基础

    . 对于一个存在系统性能的系统,说出你的诊断处理思路 ). 做statspack收集系统相关信息 了解系统大致情况/确定是否存在参数设置不合适的地方/查看top event/查看top sql等 ). ...

  6. Python原来这么好学-1.2节: 在Linux中安装python

    这是一本教同学们彻底学通Python的高质量学习教程,认真地学习每一章节的内容,每天只需学好一节,帮助你成为一名卓越的Python程序员: 本教程面向的是零编程基础的同学,非科班人士,以及有一定编程水 ...

  7. Yandex Big Data Essentials Week1 Unix Command Line Interface File Content exploration

    cat displays the contents of a file at the command line copies or apppend text file into a document ...

  8. [Effective Java 读书笔记] 第三章 对所有对象都通用的方法 第十---十一条

    第十条 始终覆盖toString() toString的实现可以使类使用起来更加舒适,在执行println等方法时打印出定制信息. 一单实现了自己的toString,指定输出的固定格式,在方法的文档说 ...

  9. Apache的那些事-查找配置文件

    在CentOS 6.5 里Apache的 安装后出现两个httpd.conf配置文件,一个在          /etc/httpd/conf/httpd.conf             这个事li ...

  10. Spring ioc(4)---如何解决循环依赖

    前面说到对象的创建,那么在创建的过程中Spring是怎么又是如何解决循环依赖的呢.前面提到有个三级缓存.就是利用这个来解决循环依赖.打个比方说实例化A的时候,先将A创建(早期对象)放入一个池子中.这个 ...