import tensorflow as tf
weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.contrib.layers.l1_regularizer(0.5)(weights))
5.0
>>> sess.run(tf.keras.regularizers.l1(0.5)(weights))
5.0
>>> sess.run(tf.keras.regularizers.l1()(weights))
0.099999994
>>> sess.run(tf.keras.regularizers.l1(1)(weights))
10.0
>>> sess.run(tf.nn.l2_loss(weights))
15.0
>>> sess.run(tf.keras.regularizers.l2(1)(weights))
30.0
>>> sess.run(tf.keras.regularizers.l2(0.5)(weights))
15.0
>>> sess.run(tf.contrib.layers.l1_regularizer(0.5)(weights))
5.0
>>> sess.run(tf.contrib.layers.l2_regularizer(0.5)(weights))
7.5
>>> sess.run(tf.contrib.layers.l2_regularizer(1.0)(weights))
15.0

在tensorflow中,tf.nn中只有tf.nn.l2_loss,却没有l1_loss,于是自己网上查阅资料,了解到tf.contrib.layers中有tf.contrib.layers.l1_regularizer(),但是tf.contrib目前新版本已经被弃用了,后来发现tf.keras.regularizers下面有l1和l2正则化器,但是该正则化器的l2有点不一样,从上面的结果可以看出,scale都为1时,它要多一倍。可以查看源代码,tf.nn.l2_loss和 tf.contrib.layers.l2_regularizer 中都统一除以了2.所以值要少一半。

>>> sess.run(tf.nn.l2_loss(weights))
15.0
>>> sess.run(tf.keras.regularizers.l2(1)(weights))
30.0
>>> sess.run(tf.contrib.layers.l2_regularizer(1.0)(weights))
15.0
将scale设为0.5后,可以得到一样的值,因此,以后在损失函数中可以使用这样的方式来求l2损失和l1损失。
>>> sess.run(tf.keras.regularizers.l2(0.5)(weights))
15.0
参考了  day-17 L1和L2正则化的tensorflow示例 - 派森蛙 - 博客园

https://www.cnblogs.com/python-frog/p/9416970.html

'''
输入:
x = [[1.0,2.0]]
w = [[1.0,2.0],[3,0,4.0]] 输出:
y = x*w = [[7.0,10.0]]
l1 = (1.0+2.0+3.0+4.0)*0.5 = 5.0
l2 = (1.0**2 + 2.0**2 + 3.0**2 + 4.0**2) / 2)*0.5 = 7.5
''' import tensorflow as tf
from tensorflow.contrib.layers import * w = tf.constant([[1.0,2.0],[3.0,4.0]])
x = tf.placeholder(dtype=tf.float32,shape=[None,2])
y = tf.matmul(x,w) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(y,feed_dict={x:[[1.0,2.0]]}))
print("=========================")
print(sess.run(l1_regularizer(scale=0.5)(w)))
#(1.0+2.0+3.0+4.0)*0.5 = 5.0
print("=========================")
print(sess.run(l2_regularizer(scale=0.5)(w)))
#(1.0**2 + 2.0**2 + 3.0**2 + 4.0**2) / 2)*0.5 = 7.5

tensorflow 中的L1和L2正则化的更多相关文章

  1. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  2. day-17 L1和L2正则化的tensorflow示例

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...

  3. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  4. 深入理解L1、L2正则化

    过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...

  5. L1 与 L2 正则化

    参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...

  6. Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解

    概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)La ...

  7. L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

  8. L1与L2正则化

    目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训 ...

  9. L1、L2正则化详解

    正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...

随机推荐

  1. VirtualBox桥接网络,设置虚拟机联网,连接VirtualBox虚拟系统中的数据库等

    由于最近搭建一个项目自己的阿里云的服务器内存不足,自己笔记本使用VitrualBox电脑虚拟linux系统来搭建,把这次使用过程遇到的问题记录下来也能帮助遇到同样的小伙伴. 软件: VirtualBo ...

  2. CSS颜色表示的几种方式

    在CSS中颜色有很多表示方式,今天列出一些常见的颜色表示方式及它们的用法. ①color:blue;  第一种,调用颜色属性,将颜色的英文输入在冒号后,以分号结束. 这种方法直接了当,但是能表示的颜色 ...

  3. Linux系统之LAMP实现

    1.部署分离的LAMP,部署到二台服务器上,php加载xcache模块 首先准备LAMP环境,准备两台Linux主机,一台是192.168.0.10 ,这台上面主要跑apache httpd ,mar ...

  4. Codeforces_712_B

    http://codeforces.com/problemset/problem/712/B 水,判断奇偶即可. #include<iostream> #include<string ...

  5. windows系统快速安装pytorch的详细教程

    pip和conda的区别 之前一直使用conda和pip ,有时候经常会两者混用.但是今天才发现二者装的东西不是在一个地方的,所以发现有的东西自己装了,但是在运行环境的时候发现包老是识别不了,一直都特 ...

  6. BZOJ 1601 [Usaco2008 Oct]灌水 (建图+mst)

    题意: 300个坑,每个坑能从别的坑引水,或者自己出水,i从j饮水有个代价,每个坑自己饮水也有代价,问让所有坑都有谁的最少代价 思路: 先建一个n的完全图,然后建一个超级汇点,对每个点连w[i],跑m ...

  7. 用反射、泛型 改造SqlHelper

    1.  数据准备 public class BaseModel { public int Id { set; get; } } public class Company : BaseModel { p ...

  8. python练习——第3题

    原GitHub地址:https://github.com/Yixiaohan/show-me-the-code 题目:将 0001 题生成的 200 个激活码(或者优惠券)保存到 Redis 非关系型 ...

  9. Linux 邮件服务

    三个要点 1.smtp协议 2.搭建本地邮件服务器 3.使用外部邮件服务器 实现邮件功能 1.smtp协议           SMTP(Simple Mail Transfer Protocol)即 ...

  10. 安装 Cacti 监控

    简介:                Cacti是一套基于PHP,MySQL,SNMP及RRDTool开发的网络流量监测图形分析工具.         Cacti是通过 snmpget来获取数据,使用 ...