【题目链接】

  http://www.lydsy.com/JudgeOnline/problem.php?id=1408

【题意】

求m的所有约数中,满足可以分解成(奇数个不同素数/偶数个不同素数/其他)的所有的phi之和。

【思路】

ans1表示目前为止有偶数个奇质因子的欧拉函数的前缀和

ans2表示目前为止有奇数个奇质因子的欧拉函数的前缀和。

注意2不是奇质因子,需要去掉。

第三种可以由m-1减去前两种,减1为去掉1,1不是老师。

【代码】

 #include<cstdio>
#include<cstring>
using namespace std; const int N = 2e3+;
const int MOD = ; int pow(int a,int p,int mod)
{
int ans=;
while(p) {
if(p&) ans=(ans*a)%mod;
a=(a*a)%mod; p>>=;
}
return ans;
} int ans1,ans2,ans3,n,m,p,e; int main()
{
scanf("%d",&n);
m=;
for(int i=;i<=n;i++)
{
scanf("%d%d",&p,&e);
m=(m*pow(p,e,MOD))%MOD;
if(p==) continue;
int t1=(ans1+ans2*(p-))%MOD;
int t2=(ans2+(ans1+)*(p-))%MOD;
ans1=t1,ans2=t2;
}
ans3=((m--ans1-ans2)%MOD+MOD)%MOD;
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return ;
}

bzoj 1408 [Noi2002]Robot(欧拉函数)的更多相关文章

  1. BZOJ 1408: [Noi2002]Robot

    1408: [Noi2002]Robot Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 510  Solved: 344[Submit][Status][ ...

  2. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  3. bzoj 2190 仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2245  Solved: 1413[Submit][Statu ...

  4. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  5. BZOJ 2190仪仗队【欧拉函数】

    问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0 ...

  6. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  7. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  8. BZOJ 2818 GCD(欧拉函数)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161 题意:gcd(x, y) = 质数, 1 <= x, ...

  9. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

随机推荐

  1. TCL语言笔记:TCL练习二

    一.练习 1.二进制转十进制 proc b2d {b} { ;set len [string length $b] } {$i<$len} {incr i} { incr sum [expr , ...

  2. QT里使用sqlite的问题,好多坑

    1. 我使用sqlite,开发机上好好的,测试机上却不行.后来发现是缺少驱动(Driver not loaded Driver not loaded),代码检查了又检查,发现应该是缺少dll文件(系统 ...

  3. C++:函数模板与模板函数

    6.1 模板的概念 C++允许用同一个函数定义函数,这些函数的参数个数和参数类型不同.例如求最大值的max函数, int max(int x,int y) {       return (x>y ...

  4. 【Spring】Redis的两个典型应用场景--good

    原创 BOOT Redis简介 Redis是目前业界使用最广泛的内存数据存储.相比memcached,Redis支持更丰富的数据结构,例如hashes, lists, sets等,同时支持数据持久化. ...

  5. C++异常以及异常与析构函数

    1. 抛出异常 1.1 抛出异常(也称为抛弃异常)即检测是否产生异常,在C++中,其采用throw语句来实现,如果检测到产生异常,则抛出异常. 该语句的格式为: throw 表达式; 如果在try语句 ...

  6. 【转载】R6034错误,C Runtime Error

    能查到的解决方法都在里面有提及: 我是使用 stdafx.h加入这句 code #pragma comment(linker, "\"/manifestdependency:typ ...

  7. jsp中四种传递参数的方法

    jsp中四种传递参数的方法如下: 1.form表单 2.request.setAttribute();和request.getAttribute(); 3.超链接:<a herf="i ...

  8. SQL中存储过程和自定义函数的区别

    存储过程:     存储过程可以使得对数据库的管理.以及显示关于数据库及其用户信息的工作容易得多.存储过程是 SQL 语句和可选控制流语句的预编译集合,以一个名称存储并作为一个单元处理.存储过程存储在 ...

  9. js风格技巧

    1.一个页面的所有js都可以写成这样,比如:   var index ={};   index.User = ****;   index.Init = function(){ $("$tes ...

  10. OK335xS dhcpcd porting

    /********************************************************************** * OK335xS dhcpcd porting * 说 ...