题目说明:

给定一组数字或符号,按照字典序产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}、{1}、{1,2}、{1,2,3}、{1,3}、{2}、{2,3}、{3}。

题目解析:

如果要产生字典顺序,例如若有4个元素,则:

{} => {1} => {1,2} => {1,2,3} => {1,2,3,4} =>
{1,2,4} =>
{1,3} => {1,3,4} =>
{1,4} =>
{2} => {2,3} => {2,3,4} =>
{2,4} =>
{3} => {3,4} =>
{4}

简单的说,如果有n个元素要产生可能的集合,当依序产生集合时,如果最后一个元素是n,而倒数第二个元素是m的话,

例如:

{a b c d e n}

则下一个集合就是{a b c d e+1},再依序加入后续的元素。
例如有四个元素,而当产生{1 2 3 4}集合时,则下一个集合就是{1 2 3+1},也就是{1 2 4},由于最后一个元素还是4,所以下一个集合就是{1 2+1},也就是{1 3},接下来再加入后续元素4,也就是{1 3 4},由于又遇到元素4,所以下一个集合是{1 3+1},也就是{1 4}。

程序代码:

#include <gtest/gtest.h>
using namespace std; void ShowResult(int State[], int nSize)
{
cout << "{";
for (int i=0; i<nSize; ++i)
{
cout << State[i] << " ";
}
cout << "}\n";
} // 产生字典序的子集
int GenerateOrderSubset(int nSize)
{
if (nSize==0)
{
cout << "{}" << endl;
return 1;
} int nCount = 0;
int nPos = -1;
int *State = new int[nSize];
memset(State, 0, sizeof(int)*nSize); do
{
nCount++;
ShowResult(State, nPos+1);
if (nPos==-1)
{
State[++nPos] = 1;
continue;
} if (State[nPos] < nSize) // 递增集合个数
{
State[nPos+1] = State[nPos] + 1;
nPos++;
}
else if(nPos > 0) // 如果不是第一个位置
{
nPos—; // 倒退
State[nPos]++;// 下一个集合尾数
}
else
{
break; // 已倒退至第一个位置
}
}
while(true); delete[] State; return nCount;
} TEST(Algo, tCombination)
{
// 有字典序 // 0个数子集合数 =〉2^0 = 1
ASSERT_EQ(GenerateOrderSubset(0), 1); // 3个数子集合数 =〉2^3 = 8
ASSERT_EQ(GenerateOrderSubset(3), 8); // 5个数子集合数 =〉2^5 = 32
ASSERT_EQ(GenerateOrderSubset(5), 32); // 10个数子集合数 =〉2^10 = 1024
ASSERT_EQ(GenerateOrderSubset(10), 1024);
}

参考引用:

http://www.cnblogs.com/Quincy/p/4838051.html

  看书、学习、写代码

[经典算法] 排列组合-N元素集合的所有子集(二)的更多相关文章

  1. [经典算法] 排列组合-N元素集合的所有子集(一)

    题目说明: 给定一组数字或符号,产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}.{1}.{1,2}.{1,2,3}.{1,3}.{2}.{2,3}.{3}. 题目解析: 如 ...

  2. [经典算法] 排列组合-N元素集合的M元素子集

    题目说明: 假设有个集合拥有n个元素,任意的从集合中取出m个元素,则这m个元素所形成的可能子集有那些? 题目解析: 假设有5个元素的集合,取出3个元素的可能子集如下: {1 2 3}.{1 2 4 } ...

  3. python算法-排列组合

    排列组合 一.递归 1.自己调用自己 2.找到一个退出的条件 二.全排列:针对给定的一组数据,给出包含所有数据的排列的组合 1:1 1,2:[[1,2],[2,1]] 1,2,3:[[1,2,3],[ ...

  4. HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)

    传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...

  5. 递归算法之排列组合-求一个集合S的m个元素的组合和所有可能的组合情况

    求一个集合S的m个元素组合的所有情况,并打印出来,非常适合采用递归的思路进行求解.因为集合的公式,本身就是递归推导的: C(n,m) = C(n-1,m-1) + C(n-1,m). 根据该公式,每次 ...

  6. 排列组合或容斥原理 SPOJ - AMR11H

    题目链接: https://vjudge.net/contest/237052#problem/H 这里给你一串数字,让你计算同时拥有这串数字最大值和最小值的子集(连续)和子序列(可以不连续)的数量, ...

  7. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

  8. N个数组中所有元素的排列组合(笛卡尔积)算法

    (1)N个数组对象中所有元素排列组合算法 private List<List<Object>> combineAlg(List<Object[]> nArray) ...

  9. 排列组合算法(PHP)

    用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...

随机推荐

  1. JQuery中attr ,html,text,val,的一些用法

    attr:主要获取元素内部的属性,返回 的是属性值 html:返回当前元素(不包括他自己本身的标签,但是可以返回他自己的)的标签加上内容.仅限于返回第一个. text:和 .html() 方法不同, ...

  2. Spring REST实践之REST基本介绍

    REST是什么 REST(REpresentational State Transfer)是一个设计分布式web应用的框架风格,有六个基本原则: Client-Server:应用的参独立与者可分为Cl ...

  3. EasyUI Accordion下的Panel面板初始化时全部折叠

    EasyUI Accordion下的Panel面板有一个属性:selected,默认值为:false.初始化时,若设置'selected:true',则面板默认打开,效果如下: <div tit ...

  4. 同时使用Binding&StringFormat 显示Text【项目】

    Case ID (?unit) 红色的字根据一个后台boolean来做trigger,可以是Case or Open 蓝色的字binding到后台的一个string属性来切换任意的Unit单位 这样一 ...

  5. MES取所有部门的函数实例

    USE [ChangHong]GO/****** Object: UserDefinedFunction [dbo].[FN_GetDeptCode] Script Date: 04/26/2016 ...

  6. 从UnitedStack OS 1.0 Preview试用申请问卷调查学习OpenStack

    http://www.diaochapai.com/survey/ 您的角色最可能是? * (必填, 多选) OpenStack私有云用户,希望能将OpenStack/UOS用于公司内部私有云 云计算 ...

  7. StringUtils 字符串工具类

    package com.thinkgem.jeesite.common.utils; import java.io.File; import java.io.IOException; import j ...

  8. IAR USING PRE- AND POST-BUILD ACTIONS

    Using pre-build actions for time stamping If necessary, you can specify pre-build and post-build act ...

  9. codeforces Gym 100187A A. Potion of Immortality

    A. Potion of Immortality Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1001 ...

  10. .NET正则基础——.NET正则类及方法应用

    1        概述 初学正则时,对于Regex类不熟悉,遇到问题不知道该用哪种方法解决,本文结合一些正则应用的典型应用场景,介绍一下Regex类的基本应用.这里重点进行.NET类的介绍,对于正则的 ...