Vieta定理
一元$n$次方程$$P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{a}x+a_{0}=a_{n}(x-x_{1})(x-x_{2})\cdots (x-x_{n})$$
根与系数的关系:展开次数相同的项系数相同即可。
常用:
(i). $x_{1}+x_{2}+\cdots+x_{n}=-\frac{a_{n-1}}{a_{n}}$
(ii). $x_{1}x_{2}\cdots x_{n}=(-1)^{n}\frac{a_{0}}{a_{n}}$
应用:
(i) 设矩阵$A=(a_{ij})_{n \times n}$, 证明:$|x E-A |$的$n$个根之和为$tr(A)$. $x$称为矩阵的特征值.
(ii) 矩阵在相似变换下,特征值保持不变,且迹保持不变.
Vieta定理的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- Mittag-Leffler定理,Weierstrass因子分解定理和插值定理
Mittag-Leffler定理 设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- poj1006Biorhythms(同余定理)
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...
随机推荐
- BZOJ2482: [Spoj1557] Can you answer these queries II
题解: 从没见过这么XXX的线段树啊... T_T 我们考虑离线做,按1-n一个一个插入,并且维护区间[ j,i](i为当前插入的数)j<i的最优值. 但这个最优值!!! 我们要保存历史的最优值 ...
- 出现错误ActivityManager: Warning: Activity not started, its current task has been
1.在学习两个Activity的切换时,重新把新的工程部署上模拟器时候出现错误:ActivityManager: Warning: Activity not started, its current ...
- vs2010 js代码折叠
方法一:插件 在Visaul Studio 2010中写js或css代码,缺少像写C#代码时的那种折叠功能,当代码比较多时,就很不方便. 但是已经有VS2010扩展支持这个功能,它就是--JSEn ...
- UVALive 4128 Steam Roller(最短路(拆点,多状态))
题意:模拟了汽车的行驶过程,边上的权值为全速通过所消耗的时间,而起步(从起点出发的边).刹车(到终点结束的边).减速(即将拐弯的边).加速(刚完成拐弯的边)这四种不能达到全速的情况,消耗的时间为权值* ...
- error LNK2019: 无法解析的外部符号 __imp___CrtDbgReportW
error LNK2005 and error LNK2019 error LNK2019: unresolved external symbol __imp___CrtDbgReportW refe ...
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- 利用Modbus协议读取电能表的数据
1.电脑要有485转232的转换器2.你要看懂DLT_645—1997规约的通讯协议,现在大多电能表厂都会遵行这个通讯协议,DLT_645—1997规约不是最新的通讯协议.就看电表的使用什么通讯协议. ...
- CXF之八 RESTFul服务
JAX-RS概述 JAX-RS是Java提供用于开发RESTful Web服务基于注解(annotation)的API.JAX-RS旨在定义一个统一的规范,使得Java程序员可以使用一套固定的接口来开 ...
- ASP.NET 日期 时间 年 月 日 时 分 秒 格式及转换
在平时编码中,经常要把日期转换成各种各样的形式输出或保持,今天专门做了个测试,发现DateTime的ToString()方法居然有这么多的表现形式,和大家一起分享. DateTime time=Dat ...
- SQL对字符串进行排序
假设字符串中只由'A'.'B'.'C'.'D'组成,且长度为7.并设函数REPLICATE(<字符串>,<n>)可以创建一个<字符串>的n个副本的字符串,另外还有R ...