rt 稳定婚姻匹配问题

The Stable Marriage Problem

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)

Total Submission(s): 438    Accepted Submission(s): 222

Problem Description
The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:



a set M of n males;

a set F of n females;



for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).

A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal
if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.



Given preferable lists of males and females, you must find the male-optimal stable marriage.


 
Input
The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe
preferable lists for males. Next n lines describe preferable lists for females.


 
Output
For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.


 
Sample Input
2
3
a b c A B C
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
3
a b c A B C
a:ABC
b:ABC
c:BCA
A:bac
B:acb
C:abc
 
Sample Output
a A
b B
c C a B
b A
c C
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> using namespace std; int n;
char boy_name[30][2],girl_name[30][2];
int to_boy[26],to_girl[26]; int perfect_boy[30][30],perfect_girl[30][30];
int future_husband[30],future_wife[30];
int next[30];
queue<int> q; void init()
{
memset(boy_name,0,sizeof(boy_name));
memset(girl_name,0,sizeof(girl_name));
memset(to_boy,0,sizeof(to_boy));
memset(to_girl,0,sizeof(to_girl));
memset(perfect_boy,0,sizeof(perfect_boy));
memset(perfect_girl,0,sizeof(perfect_girl));
memset(future_husband,0,sizeof(future_husband));
memset(future_wife,0,sizeof(future_wife));
memset(next,0,sizeof(next));
while(!q.empty()) q.pop();
} void engage(int boy,int girl)
{
int m=future_husband[girl];
if(m)
{
future_wife[m]=0;
q.push(m);
}
future_husband[girl]=boy;
future_wife[boy]=girl;
} bool lover(int boy,int m,int girl)
{
for(int i=1;i<=n;i++)
{
if(perfect_boy[girl][i]==boy) return true;
if(perfect_boy[girl][i]==m) return false;
}
} int main()
{
int T_T,flag=0;
char in[50];
scanf("%d",&T_T);
while(T_T--)
{
if(flag==0) flag=1;
else putchar(10);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",boy_name[i]);
to_boy[boy_name[i][0]-'a']=i;
}
for(int i=1;i<=n;i++)
{
scanf("%s",girl_name[i]);
to_girl[girl_name[i][0]-'A']=i;
}
for(int i=0;i<n;i++)
{
scanf("%s",in);
int boy=to_boy[in[0]-'a'];
for(int j=2;j<n+2;j++)
{
int girl=to_girl[in[j]-'A'];
perfect_girl[boy][j-1]=girl;
}
q.push(i+1);
}
for(int i=0;i<n;i++)
{
scanf("%s",in);
int girl=to_girl[in[0]-'A'];
for(int j=2;j<n+2;j++)
{
int boy=to_boy[in[j]-'a'];
perfect_boy[girl][j-1]=boy;
}
}
while(!q.empty())
{
int boy=q.front(); q.pop();
int girl=perfect_girl[boy][++next[boy]];
int m=future_husband[girl];
if(m==0)
engage(boy,girl);
else
{
if(lover(boy,m,girl))
engage(boy,girl);
else q.push(boy);
}
}
for(int i=1;i<=n;i++)
{
int boy=to_boy[boy_name[i][0]-'a'];
printf("%c %c\n",boy_name[i][0],girl_name[future_wife[boy]][0]);
}
}
return 0;
}

HDOJ 1914 The Stable Marriage Problem的更多相关文章

  1. 【HDOJ】1914 The Stable Marriage Problem

    稳定婚姻问题,Gale-Shapley算法可解. /* 1914 */ #include <iostream> #include <sstream> #include < ...

  2. The Stable Marriage Problem

    经典稳定婚姻问题 “稳定婚姻问题(The Stable Marriage Problem)”大致说的就是100个GG和100个MM按照自己的喜欢程度给所有异性打分排序.每个帅哥都凭自己好恶给每个MM打 ...

  3. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  4. [POJ 3487]The Stable Marriage Problem

    Description The stable marriage problem consists of matching members of two different sets according ...

  5. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  6. 【转】稳定婚姻问题(Stable Marriage Problem)

    转自http://www.cnblogs.com/drizzlecrj/archive/2008/09/12/1290176.html 稳定婚姻是组合数学里面的一个问题. 问题大概是这样:有一个社团里 ...

  7. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  8. poj 3478 The Stable Marriage Problem 稳定婚姻问题

    题目给出n个男的和n个女的各自喜欢对方的程度,让你输出一个最佳搭配,使得他们全部人的婚姻都是稳定的. 所谓不稳婚姻是说.比方说有两对夫妇M1,F1和M2,F2,M1的老婆是F1,但他更爱F2;而F2的 ...

  9. 水题 HDOJ 4716 A Computer Graphics Problem

    题目传送门 /* 水题:看见x是十的倍数就简单了 */ #include <cstdio> #include <iostream> #include <algorithm ...

随机推荐

  1. c/c++ 数字转成字符串, 字符串转成数字

    c/c++ 数字转成字符串, 字符串转成数字 ------转帖 数字转字符串: 用C++的streanstream: #include <sstream> #Include <str ...

  2. Windows8.1 安装office2013并激活

    之前笔记本上安装的东西太多了,启动比较慢,打算重做系统,正好同事有一个Windows8.1的系统盘,直接做了一个Windows8.1的系统.界面清爽,速度还可以,系统安装完成以后,准备安装office ...

  3. echart图表控件配置入门(一)

    现在主流的web图表控件主要有hightchart.fusionchart.echart: echart作为百度前端部门近期推出的一个基于html5的免费图表控件,以其丰富图表类型和良好的兼容性速度得 ...

  4. Mapreduce读取Hbase表,写数据到多个Hbase表中

    Job端的变化: 通过设置conf,配置输出表,在reduce中获取输出表名字 Configuration conf = job.getConfiguration(); //输出表1 conf.set ...

  5. WS之cxf与spring整合1

    1.在web.xml中加入CXFServlet: <!-- 下面表示所有来自/cxfservice/*的请求,都交给 CXFServlet来处理 .--> <servlet>  ...

  6. linux rar工具

    rar系统工具: wget http://www.rarlab.com/rar/rarlinux-3.8.0.tar.gz tar -zxvf rarlinux-3.8.0.tar.gz cd rar ...

  7. mysql基础知识(4)--修改

    修改表: 一般概述 通常,创建一个表,能搞定(做到)的事情,修改表也能做到.大体来说,就可以做到: 增删改字段: 增:alter  table  表名  add  [column]  字段名  字段类 ...

  8. LINQ标准查询操作符(三)——Aggregate、Average、Distinct、Except、Intersect、Union、Empty、DefaultIfEmpty、Range、Repeat

    七.聚合操作符 聚合函数将在序列上执行特定的计算,并返回单个值,如计算给定序列平均值.最大值等.共有7种LINQ聚合查询操作符:Aggregate.Average.Count.LongCount.Ma ...

  9. Hadoop MapReduce概念学习系列之mr程序组件全貌(二十)

    其实啊,spilt是,控制Apache Hadoop Mapreduce的map并发任务数,详细见http://www.cnblogs.com/zlslch/p/5713652.html map,是m ...

  10. <转>Linux环境进程间通信(二): 信号(上)

    原文链接:http://www.ibm.com/developerworks/cn/linux/l-ipc/part2/index1.html 原文如下: 一.信号及信号来源 信号本质 信号是在软件层 ...