rt 稳定婚姻匹配问题

The Stable Marriage Problem

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)

Total Submission(s): 438    Accepted Submission(s): 222

Problem Description
The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:



a set M of n males;

a set F of n females;



for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).

A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal
if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.



Given preferable lists of males and females, you must find the male-optimal stable marriage.


 
Input
The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe
preferable lists for males. Next n lines describe preferable lists for females.


 
Output
For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.


 
Sample Input
2
3
a b c A B C
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
3
a b c A B C
a:ABC
b:ABC
c:BCA
A:bac
B:acb
C:abc
 
Sample Output
a A
b B
c C a B
b A
c C
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> using namespace std; int n;
char boy_name[30][2],girl_name[30][2];
int to_boy[26],to_girl[26]; int perfect_boy[30][30],perfect_girl[30][30];
int future_husband[30],future_wife[30];
int next[30];
queue<int> q; void init()
{
memset(boy_name,0,sizeof(boy_name));
memset(girl_name,0,sizeof(girl_name));
memset(to_boy,0,sizeof(to_boy));
memset(to_girl,0,sizeof(to_girl));
memset(perfect_boy,0,sizeof(perfect_boy));
memset(perfect_girl,0,sizeof(perfect_girl));
memset(future_husband,0,sizeof(future_husband));
memset(future_wife,0,sizeof(future_wife));
memset(next,0,sizeof(next));
while(!q.empty()) q.pop();
} void engage(int boy,int girl)
{
int m=future_husband[girl];
if(m)
{
future_wife[m]=0;
q.push(m);
}
future_husband[girl]=boy;
future_wife[boy]=girl;
} bool lover(int boy,int m,int girl)
{
for(int i=1;i<=n;i++)
{
if(perfect_boy[girl][i]==boy) return true;
if(perfect_boy[girl][i]==m) return false;
}
} int main()
{
int T_T,flag=0;
char in[50];
scanf("%d",&T_T);
while(T_T--)
{
if(flag==0) flag=1;
else putchar(10);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",boy_name[i]);
to_boy[boy_name[i][0]-'a']=i;
}
for(int i=1;i<=n;i++)
{
scanf("%s",girl_name[i]);
to_girl[girl_name[i][0]-'A']=i;
}
for(int i=0;i<n;i++)
{
scanf("%s",in);
int boy=to_boy[in[0]-'a'];
for(int j=2;j<n+2;j++)
{
int girl=to_girl[in[j]-'A'];
perfect_girl[boy][j-1]=girl;
}
q.push(i+1);
}
for(int i=0;i<n;i++)
{
scanf("%s",in);
int girl=to_girl[in[0]-'A'];
for(int j=2;j<n+2;j++)
{
int boy=to_boy[in[j]-'a'];
perfect_boy[girl][j-1]=boy;
}
}
while(!q.empty())
{
int boy=q.front(); q.pop();
int girl=perfect_girl[boy][++next[boy]];
int m=future_husband[girl];
if(m==0)
engage(boy,girl);
else
{
if(lover(boy,m,girl))
engage(boy,girl);
else q.push(boy);
}
}
for(int i=1;i<=n;i++)
{
int boy=to_boy[boy_name[i][0]-'a'];
printf("%c %c\n",boy_name[i][0],girl_name[future_wife[boy]][0]);
}
}
return 0;
}

HDOJ 1914 The Stable Marriage Problem的更多相关文章

  1. 【HDOJ】1914 The Stable Marriage Problem

    稳定婚姻问题,Gale-Shapley算法可解. /* 1914 */ #include <iostream> #include <sstream> #include < ...

  2. The Stable Marriage Problem

    经典稳定婚姻问题 “稳定婚姻问题(The Stable Marriage Problem)”大致说的就是100个GG和100个MM按照自己的喜欢程度给所有异性打分排序.每个帅哥都凭自己好恶给每个MM打 ...

  3. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  4. [POJ 3487]The Stable Marriage Problem

    Description The stable marriage problem consists of matching members of two different sets according ...

  5. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  6. 【转】稳定婚姻问题(Stable Marriage Problem)

    转自http://www.cnblogs.com/drizzlecrj/archive/2008/09/12/1290176.html 稳定婚姻是组合数学里面的一个问题. 问题大概是这样:有一个社团里 ...

  7. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  8. poj 3478 The Stable Marriage Problem 稳定婚姻问题

    题目给出n个男的和n个女的各自喜欢对方的程度,让你输出一个最佳搭配,使得他们全部人的婚姻都是稳定的. 所谓不稳婚姻是说.比方说有两对夫妇M1,F1和M2,F2,M1的老婆是F1,但他更爱F2;而F2的 ...

  9. 水题 HDOJ 4716 A Computer Graphics Problem

    题目传送门 /* 水题:看见x是十的倍数就简单了 */ #include <cstdio> #include <iostream> #include <algorithm ...

随机推荐

  1. PHP相关图书推荐

    PHP和MySQL Web开发(原书第4版) 作      者 [澳] Luke Welling,[澳] Luke Welling 著:武欣 等 译 出 版 社 机械工业出版社 出版时间 2009-0 ...

  2. 黑马程序员——有关protocol的小结

    在OC程序中经常会有这样的问题就是一个类想让其他类帮自己实现某些方法,然后再将结果返回给这个类:如何让一个类要找的代理去实现自己想要的方法呢? 这样就需要有一个协议,让能遵守协议的其他类都能实现协议中 ...

  3. 原型模式--prototype

    C++设计模式——原型模式 什么是原型模式? 在GOF的<设计模式:可复用面向对象软件的基础>中是这样说的:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象.这这个定义中,最 ...

  4. QS之vcom

    -2008 | -2002 | -93 | -87 choose VHDL 2008, 2002, 1993, or 1987 -explicit resolve ambiguous overload ...

  5. TopFreeTheme精选免费模板【20130701.特别版】

    今天我们整理了16款WordPress和Joomla的最新主题.它们都是来自Themeforest,RocketTheme,YooTheme以及TemPlaza的高质量主题,赶快收藏起来吧. Este ...

  6. struts2传递List对象(复合对象)

    1.前台jsp界面: <%@ page language="java" contentType="text/html; charset=utf-8" pa ...

  7. LeetCode(1) -Two Sum

    题目要求很简单,给你一个数组(例如,nums = [2,7,11,15])和一个target(target = 9),找到数组里两个数相加后能得到target的这两个数的index.在本例中,返回的应 ...

  8. python GUI初步

  9. <系统函数实现>memcmp

    这是我实现的memcmp函数: #include <stdio.h> #include <string.h> /* *int memcmp (const void *s1,co ...

  10. HDU 1525 Euclid's Game (博弈)

    Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...