分布式文件系统-HDFS
HDFS
Hadoop的核心就是HDFS与MapReduce。那么HDFS又是基于GFS的设计理念搞出来的。
HDFS全称是Hadoop Distributed System。HDFS是为以流的方式存取大文件而设计的。适用于几百MB,GB以及TB,并写一次读多次的场合。而对于低延时数据访问、大量小文件、同时写和任意的文件修改,则并不是十分适合。
优点:
1)适合存储非常大的文件
2)适合流式数据读取,即适合“只写一次,读多次”的数据处理模式
3)适合部署在廉价的机器上
缺点:
1)不适合存储大量的小文件,因为受Namenode内存大小限制
2)不适合实时数据读取,高吞吐量和实时性是相悖的,HDFS选择前者
3)不适合需要经常修改数据的场景
数据块:
每个磁盘都有默认的数据块大小,一般就是521字节。这是磁盘进行数据读写的最小单位。HDFS同样也有块(block)的概念,但是大得多,有64MB。与单一磁盘上的文件系统一样,HDFS上的文件也被划分为块大小的多个分块。但是还是有所不同,比如HDFS中小于一个块大小的文件不会占据整个块的空间。
对分布式文件系统中的快进行抽象的好处:
1)一个文件的大小可能会大于网络中任意一个磁盘的容量,文件的所有块并不需要存储在同一个磁盘上,因此可以利用集群上的任意一个磁盘进行存储,但是对于HDFS来说,它是存储了一个文件。
(这不就正是我们要的效果吗)
2)以抽象块为存储单元,简化了设计。还方便块的备份。
HDFS的架构如上图所示,总体上采用了Master/Slave的架构,主要有以下4个部分组成:
1、Client
客户端,就是我们通过调用接口实现的代码。
2、NameNode
整个HDFS集群只有一个NameNode,它存储整个集群文件分别的元数据信息。这些信息以fsimage和editlog两个文件存储在本地磁盘,Client通过这些元数据信息可以找到相应的文件。此外,NameNode还 负责监控DataNode的健康情况,一旦发现DataNode异常,就将其踢出,并拷贝其上数据至其它DataNode。
3、Secondary NameNode
Secondary NameNode负责定期合并NameNode的fsimage和editlog。这里特别注意,它不是NameNode的热备,所以NameNode依然是Single Point of Failure。它存在的主要目的是为了分担一部分 NameNode的工作(特别是消耗内存的工作,因为内存资源对NameNode来说非常珍贵)。
4、DataNode
DataNode负责数据的实际存储。当一个文件上传至HDFS集群时,它以Block为基本单位分布在各个DataNode中,同时,为了保证数据的可靠性,每个Block会同时写入多个DataNode中(默认为3)
那么文件如何存储的呢?
要存储的文件会分成很多块,存到Datanode里。分块的原则:除了最后一个数据块,其它数据块的大小相同,一般为64MB or 128MB。 每个数据块有副本(一般为3):副本多了浪费空间。
副本存储:在大多数情况下,副本系数是3,HDFS的存放策略是将一个副本存放在本地机架的节点上,一个副本放在同一机架的另一个节点上,。
HDFS通信协议
所有的 HDFS 通讯协议都是构建在 TCP/IP 协议上。客户端通过一个可 配置的端口连接到 Namenode , 通过 ClientProtocol 与 Namenode 交互。而 Datanode 是使用 DatanodeProtocol 与 Namenode 交互。再设计上, DataNode 通过周期性的向 NameNode 发送心跳和数据块来保持和 NameNode 的通信,数据块报告的信息包括数据块的属性,即数据块属于哪 个文件,数据块 ID ,修改时间等, NameNode 的 DataNode 和数据块的映射 关系就是通过系统启动时 DataNode 的数据块报告建立的。从 ClientProtocol 和 Datanodeprotocol 抽象出一个远程调用 ( RPC ), 在设计上, Namenode 不会主动发起 RPC , 而是是响应来自客户端和 Datanode 的 RPC 请求。
(这个在我们进行hadoop文件配置的时候就可以感受到,都是通过一个Ip地址加上一个端口号来访问对方的)
文件读取的过程如下:
- 使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
- Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会返回有该block拷贝的DataNode地址;
- 客户端开发库Client会选取离客户端最接近的DataNode来读取block;如果客户端本身就是DataNode,那么将从本地直接获取数据.
- 读取完当前block的数据后,关闭与当前的DataNode连接,并为读取下一个block寻找最佳的DataNode;
- 当读完列表的block后,且文件读取还没有结束,客户端开发库会继续向Namenode获取下一批的block列表。
- 读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通知Namenode,然后再从下一个拥有该block拷贝的datanode继续读。
写入文件的过程如下:
- 使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
- Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会为文件创建一个记录,否则会让客户端抛出异常;
- 当 客户端开始写入文件的时候,开发库会将文件切分成多个packets,并在内部以数据队列"data queue"的形式管理这些packets,并向Namenode申请新的blocks,获取用来存储replicas的合适的datanodes列表, 列表的大小根据在Namenode中对replication的设置而定。
- 开始以pipeline(管道)的形式将packet写入所 有的replicas中。开发库把packet以流的方式写入第一个datanode,该datanode把该packet存储之后,再将其传递给在此 pipeline中的下一个datanode,直到最后一个datanode,这种写数据的方式呈流水线的形式。
- 最后一个datanode成功存储之后会返回一个ack packet,在pipeline里传递至客户端,在客户端的开发库内部维护着"ack queue",成功收到datanode返回的ack packet后会从"ack queue"移除相应的packet。
- 如 果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移除, 剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持 replicas设定的数量。
分布式文件系统-HDFS的更多相关文章
- 大数据 --> 分布式文件系统HDFS的工作原理
分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数 ...
- 大数据技术原理与应用——分布式文件系统HDFS
分布式文件系统概述 相对于传统的本地文件系统而言,分布式文件系统(Distribute File System)是一种通过网络实现文件在多台主机上进行分布式存储的文件系统.分布式文件系统的设计一般采用 ...
- Hadoop分布式文件系统--HDFS结构分析
转自:http://blog.csdn.net/androidlushangderen/article/details/47377543 HDFS系列:http://blog.csdn.net/And ...
- 【转载】Hadoop分布式文件系统HDFS的工作原理详述
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...
- 你想了解的分布式文件系统HDFS,看这一篇就够了
1.分布式文件系统 计算机集群结构 分布式文件系统把文件分布存储到多个节点(计算机)上,成千上万的计算机节点构成计算机集群. 分布式文件系统使用的计算机集群,其配置都是由普通硬件构成的,与用多个处理器 ...
- Hadoop 分布式文件系统 - HDFS
当数据集超过一个单独的物理计算机的存储能力时,便有必要将它分不到多个独立的计算机上.管理着跨计算机网络存储的文件系统称为分布式文件系统.Hadoop 的分布式文件系统称为 HDFS,它 是为 以流式数 ...
- 分布式文件系统HDFS体系
系列文件列表: http://os.51cto.com/art/201306/399379.htm 1.介绍 hadoop文件系统(HDFS)是一个运行在普通的硬件之上的分布式文件系统,它和现有的分布 ...
- Hadoop分布式文件系统HDFS详解
Hadoop分布式文件系统即Hadoop Distributed FileSystem. 当数据集的大小超过一台独立的物理计算机的存储能力时,就有必要对它进行分区(Partition)并 ...
- Hadoop分布式文件系统HDFS的工作原理
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应 ...
随机推荐
- 项目用到异步加载头像LasyList
package com.leo.proforjob; import android.content.Context; import android.graphics.drawable.Drawable ...
- hadoop拾遗(三)---- 多种输入
虽然一个MapReduce作业的输入可能包含多个输入文件(由文件glob.过滤器和路径组成),但所有文件都由同一个InputFormat和同一个Mapper来解释.然而,数据格式往往会随时间而演变,所 ...
- linux内核下载
01最新版:https://www.kernel.org/ 02老旧版:https://www.kernel.org/pub/linux/kernel/v3.x/ ------------------ ...
- 查看mssql死锁的详细信息(存储过程)
CREATE procedure [dbo].[sp_who_lock]asbegindeclare @spid int,@bl int, @intTransactionCountOn ...
- 学习Hadoop不错的系列文章
1)Hadoop学习总结 (1)HDFS简介 (2)HDFS读写过程解析 (3)Map-Reduce入门 (4)Map-Reduce的过程解析 (5)Hadoop的运行痕迹 (6)Apache Had ...
- hdu 4882 ZCC Loves Codefires (贪心 推导)
题目链接 做题的时候凑的规律,其实可以 用式子推一下的. 题意:n对数,每对数有e,k, 按照题目的要求(可以看下面的Hint就明白了)求最小的值. 分析:假设现在总的是sum, 有两个e1 k1 e ...
- EF4.0和EF5.0增删改查写法区别
1 public T AddEntity(T entity) 2 { 3 //EF4.0的写法 4 添加实体 5 //db.CreateObjectSet<T>().AddObject(e ...
- 【JS】<c:foreach>用法
<c:foreach>类似于for和foreach循环 以下是我目前见过的用法: 1.循环遍历,输出所有的元素. <c:foreach items="${list}&q ...
- Delphi 为什么它提示PCHAR是不安全的类型呢 Unsafe type 'PChar'
DELPHI7已经考虑到了移植到点NET的问题,在点NET里,指针是不安全的.至于为什么有的人遇到,有的人没有遇到,那是因为各人的编译选项不同.在Project菜单下选Options“Compiler ...
- Android Studio如何快速生成get,set,tostring,构造函数
刚开始使用Android Studio时,在创建一个javabean时,很习惯的在JavaBean类中,右键去找生成get,set等选项.但是很遗憾,找不到. 那这边如何快速的set,get或者生成构 ...