UVa 1393 (容斥原理、GCD) Highways
题意:
给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点。
分析:
首先说紫书上的思路,编程较简单且容易理解。由于对称性,所以只统计“\”这种线型的,最后乘2即是答案。
枚举斜线包围盒的大小,如果盒子的长宽ab互质,则是可以的。这种盒子共有(m-a)(n-b)个,但要减去其中重复的。如果有一个长宽为2a和2b的大盒子,则计数右下角的小盒子的同时,左上角的小盒子会重复,所以要减去重复的盒子的个数c = max(0, m-2a) * max(0, n-2b)
最后gcd(a, b)的值是要预处理的
#include <cstdio>
#include <algorithm> const int maxn = ;
int gcd[maxn+][maxn+]; int GCD(int a, int b)
{
return b == ? a : GCD(b, a%b);
} int main()
{
for(int i = ; i <= maxn; ++i)
for(int j = ; j <= i; ++j)
gcd[i][j] = gcd[j][i] = GCD(i, j); int n, m;
while(scanf("%d%d", &n, &m) == && n)
{
int ans = ;
for(int a = ; a <= n; ++a)
for(int b = ; b <= m; ++b)
if(gcd[a][b] == )
{
int c = std::max(, n-a*) * std::max(, m-b*);
ans += (n-a)*(m-b) - c;
} printf("%d\n", ans * );
} return ;
}
代码君
解法二:
解法转自UVA 1393 - Highways (容斥原理计数)
dp(i, j)表示在长宽为ij的盒子中,从左上角最多能连多少条不重复的直线。
可以根据容斥原理递推dp(i, j) = dp(i-1, j) + dp(i, j-1) - dp(i-1, j-1) + (gcd(i, j) = 1) (因为盒子两边长互质的时候,才能连出一条新边出来)
最后答案ans递推的形式也是一样的,但重复的连线是那些缩小两倍后仍存在的直线
ans(i, j) = ans(i-1, j) + ans(i, j-1) - ans(i-1, j-1) + dp(i, j) - dp(i/2, j/2)
最后代码中,本想着只计算一半答案会快一点,结果排名21,登榜失败。
#include <cstdio>
#include <algorithm> const int maxn = ;
int dp[maxn+][maxn+], ans[maxn+][maxn+]; int gcd(int a, int b)
{
return b == ? a : gcd(b, a%b);
} void Init()
{
for(int i = ; i <= maxn; ++i)
for(int j = ; j <= i; ++j)
{
if(i == j) dp[i][j] = dp[i][j-] * - dp[i-][j-] + (gcd(i, j) == );
else dp[i][j] = dp[i-][j] + dp[i][j-] - dp[i-][j-] + (gcd(i, j) == );
} for(int i = ; i <= maxn; ++i)
for(int j = ; j <= i; ++j)
{
if(i == j) ans[i][j] = ans[i][j-] * - ans[i-][j-] + dp[i][j] - dp[i/][j/];
else ans[i][j] = ans[i][j-] + ans[i-][j] - ans[i-][j-] + dp[i][j] - dp[i/][j/];
}
} int main()
{
Init();
int n, m;
while(scanf("%d%d", &n, &m) == && n)
{
if(n < m) std::swap(n, m);
printf("%d\n", ans[n-][m-]*);
} return ;
}
代码君
UVa 1393 (容斥原理、GCD) Highways的更多相关文章
- uva 1393 - Highways(容斥原理)
题目连接:uva 1393 - Highways 题目大意:给定一个m∗n的矩阵,将矩阵上的点两两相连,问有多少条直线至少经过两点. 解题思路:头一次做这样的题目,卡了一晚上. dp[i][j]即为i ...
- uva 10951 - Polynomial GCD(欧几里得)
题目链接:uva 10951 - Polynomial GCD 题目大意:给出n和两个多项式,求两个多项式在全部操作均模n的情况下最大公约数是多少. 解题思路:欧几里得算法,就是为多项式这个数据类型重 ...
- UVA 10951 - Polynomial GCD(数论)
UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,而且n为素数. 思路:和gcd基本一样,仅仅只是传入的是 ...
- UVa 1393 - Highways(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1393 Highways(数学思想)
题意:给你n.m(n,m<=200),问你有多少条非水平.非垂直的直线有多少条经过至少两个点 题解:我们需要枚举的是只画一条线的矩形,对于大小a*b的矩形必须保证gcd(a,b)=1才能不重复 ...
- UVA 1393 Highways
https://vjudge.net/problem/UVA-1393 题意: a*b的点阵中能画多少条非水平非竖直的直线 方向‘/’ 和 方向 ‘\’ 对称 枚举直线所在矩形的i*j 直线可能重复的 ...
- UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)
先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的. 分析:由于对称性,我们只要求一个方向的线即可.该题分成两个过程,第一个过程是求出n*m的矩形中,dp[ ...
- hdu (欧拉函数+容斥原理) GCD
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...
- UVa 1642 - Magical GCD(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- .net mvc 防止 xss 与 CSRF
CSRF(Cross-site request forgery跨站请求伪造,也被称成为“one click attack”或者session riding,通常缩写为CSRF或者XSRF,是一种对网站 ...
- EXPLAIN PLAN获取SQL语句执行计划
一.获取SQL语句执行计划的方式 1. 使用explain plan 将执行计划加载到表plan_table,然后查询该表来获取预估的执行计划 2. 启用执行计划跟踪功能,即autotrace功能 3 ...
- having count(*) > 1
select phone from aa group by phone having count(*) > 1 后面的having子句是什么意思啊? 以phone分组,分组后每组里面phone出 ...
- Linux的安全模式
今天尝试了一下开机启动,在rc.local中进行设置,但是我写的java -jar transport.jar是一个Hold处理,无法退出:导致开机的时候一直停留在等待页面. 处理机制: 1. 在Li ...
- ORA-01034:oracle不可用 的解决方法
晚上打开SQLPlus输入用户名和密码老是登不了,出现如上一行代码 "ORA-01034:ORACLE不可用"的错误 解决思路: 1.检查服务是否启动, 2.如果已经启动,说明数据 ...
- s3c2440之cache
cache高速缓冲存储器注意与块设备页高速缓存进行区别,一个是硬件的实现一个是软件的实现,块设备页高速缓存. s3c2440/s3c2410里面主要有一个arm920t的核,但同时包含几个协处理器,协 ...
- (转)关于linux中内核编程中结构体的赋值操作(结构体指定初始化)
网址:http://blog.chinaunix.net/uid-24807808-id-3219820.html 在看linux源码的时候,经常会看到类似于下面的结构体赋值的代码: struct d ...
- Hibernate应用SQL查询返回实体类型
Hibernate应用SQL查询返回实体类型 Hibernate使用SQL查询返回实体类型 以前,使用SQL查询,结果放在 RS 结果集中,还要去转换影射到Java类中.Hibernate中,可以自动 ...
- myeclipse报jar包missing
一.问题描述 从版本库中check out项目后,发现项目有“感叹号”,且pom.xml文件有红色的“差号”.如下图: 在error window里可以看到missing jar包的提示,如下: 打开 ...
- <span> <div> 局部 keydown ,keyup事件。页面部分div $(document) 无效,可能焦点,添加焦点。
前天改一个bug, js 实现的一个 面板拖拉,左右各两个列表,中间面板画线连接,页面左侧列表选中后,key 事件无效.右侧选中确有效,很奇怪,查看源码,左侧选中后,$(document).on(&q ...