【CF600E】 Lomsat gelral
CF600E Lomsat gelral
Solution
考虑一下子树的问题,我们可以把一棵树的dfn序搞出来,那么子树就是序列上的一段连续的区间.
然后就可以莫队飞速求解了.
但是这题还有\(\Theta(nlog_n)\)的做法.能有\(\Theta(n\sqrt{n})\)的做法要什么\(logn\)的
考虑\(dsu\ on\ tree\),与莫队没有任何区别.
如果不会的话,请自行跳转小Z的袜子并且切掉.
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=100010;
int n,front[N],nxt[N<<1],to[N<<1],cnt,siz[N],son[N],num[N],c[N],Max,b[N];
long long ans[N];
pair<int,long long>f[N];
void Add(int u,int v){to[++cnt]=v;nxt[cnt]=front[u];front[u]=cnt;}
void dfs(int u,int fa){
siz[u]=1;
for(int i=front[u];i;i=nxt[i]){
int v=to[i];
if(v==fa)continue;
dfs(v,u);siz[u]+=siz[v];
if(siz[v]>siz[son[u]])son[u]=v;
}
}
void add(int u,int fa,int opt){
int &p=num[c[u]];
f[p].first--;f[p].second-=c[u];
p+=opt;
f[p].first++;f[p].second+=c[u];
if(opt==1)Max=max(Max,p);
else if(!f[Max].first)Max--;
for(int i=front[u];i;i=nxt[i])
{
int v=to[i];
if(v!=fa && !b[v])add(v,u,opt);
}
}
void dfs(int u,int fa,int opt){
for(int i=front[u];i;i=nxt[i]){
int v=to[i];
if(v!=fa && v!=son[u])dfs(v,u,0);
}
if(son[u])dfs(son[u],u,1);b[son[u]]=1;
add(u,fa,1);
ans[u]=f[Max].second;
b[son[u]]=0;
if(!opt)add(u,fa,-1);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&c[i]);
for(int i=1;i<n;i++){
int u,v;scanf("%d%d",&u,&v);
Add(u,v);Add(v,u);
}
dfs(1,1);dfs(1,1,1);
for(int i=1;i<=n;i++)printf("%lld%c",ans[i],i==n?'\n':' ');
return 0;
}
【CF600E】 Lomsat gelral的更多相关文章
- 【CF600E】Lomsat gelral(dsu on tree)
[CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...
- 【CF600E】Lomsat gelral
题目大意:给定一棵 N 个节点的有根树,1 号节点是树的根节点,每个节点有一个颜色.求对于每个节点来说,能够支配整棵子树的颜色之和是多少.支配的定义为对于以 i 为根的子树,该颜色出现的次数不小于任何 ...
- 【CF600E】Lomsat gelral——树上启发式合并
(题面来自luogu) 题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. ci <= n <= 1e5 裸题.统计时先扫一遍得到出 ...
- 【CF600E】Lomset gelral 题解(树上启发式合并)
题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...
- 「CF600E」Lomsat gelral
传送门 Luogu 解题思路 线段树合并板子题(也可以 dsu on the tree) 好像没什么好讲的,就是要注意开 long long . 细节注意事项 咕咕咕 参考代码 #include &l ...
- 【CodeForces】600 E. Lomsat gelral (dsu on tree)
[题目]E. Lomsat gelral [题意]给定n个点的树,1为根,每个点有一种颜色ci,一种颜色占领一棵子树当且仅当子树内没有颜色的出现次数超过它,求n个答案——每棵子树的占领颜色的编号和Σc ...
- 【Codeforces】600E. Lomsat gelral
Codeforces 600E. Lomsat gelral 学习了一下dsu on tree 所以为啥是dsu而不是dfs on tree??? 这道题先把这棵树轻重链剖分了,然后先处理轻儿子,处理 ...
- CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths
Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...
- 【主席树启发式合并】【P3302】[SDOI2013]森林
Description 给定一个 \(n\) 个节点的森林,有 \(Q\) 次操作,每次要么将森林中某两点联通,保证操作后还是个森林,要么查询两点间权值第 \(k\) 小,保证两点联通.强制在线. L ...
随机推荐
- 2017/2/14springmvc基础学习
一:核心类与接口 DispatcherServlet :前置控制器 ,HandlerMapping:请求处理接口 HandlerMapping:接口实现类 ViewResolver接口的实现类Url ...
- ATM自动取款机程序感想
上周四的Java考试,老师并没有我们考暑假给我们布置的样卷的java程序,而是让我们做一个设计ATM的程序,然而这个对于我们来说好难,因为暑假没有学好java,首先基础知识还没有掌握,输入数据一开始都 ...
- java web各个技术细节总结
HTML 非表单标签 1.b 粗体 u 下划线 i 斜体 del 删除效果 2.a 超链接 href target=-blank 3.img 图片 4.frameset(frame) 框架 ...
- 10个相见恨晚的 Java 在线练手项目
10个有意思的Java练手项目: 1.Java 开发简单的计算器 难度为一般,适合具有 Java 基础和 Swing 组件编程知识的用户学习 2.制作一个自己的 Java 编辑器 难度中等,适合 Ja ...
- 2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)
传送门 题意简述: 要求支持以下操作: 在a与b之间连一条长度为i的边(i是操作编号):删除当前图中边权最大的k条边:表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作. 要求在每次操作后 ...
- 2019.01.02 poj3046 Ant Counting(生成函数+dp)
传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...
- jQuery动态控制下拉列表的被选项[转]
<form id="form" action="/query!query.action"> <select> <option va ...
- 第11章:MongoDB-CRUD操作--文档--查询
①语法 db.collection.find(query, projection) ②参数 query :可选,使用查询操作符指定查询条件 projection :可选,使用投影操作符指定返回的键.查 ...
- js,JavaScript 监听 判断 移动端 滑动事件
<script> var startx, starty; //获得角度 function getAngle(angx, angy) { return Math.atan2(angy, an ...
- word图文混排复制到UEditor图片不显示
word图片转存,是指UEditor为了解决用户从word中复制了一篇图文混排的文章粘贴到编辑器之后,word文章中的图片数据无法显示在编辑器中,也无法提交到服务器上的问题而开发的一个操作简便的图片转 ...