题目链接

\(Description\)

https://blog.csdn.net/Yukizzz/article/details/52084528

\(Solution\)

首先每一天之间是独立的。

所以设\(f[i][j]\)为前\(i\)天赢了\(j\)局的概率,要满足当前获胜比例始终≤\(p\)。容易得出转移方程。

所以玩完\(n\)局之后获胜比例仍不超过\(p\)的概率为\(Q=\sum_{i=0}^{\frac in\leq p}f[n][i]\)。

设\(E\)为期望玩牌天数。有两种情况:

1.\(Q\)的概率不再玩了,期望为\(Q\times1\);

2.\(1-Q\)的概率第二天接着玩,期望为\((1-Q)\times(E+1)\)。

所以\(E=Q+(1-Q)\times(E+1)\),解得\(E=\frac 1Q\)。

有点迷,但好像也确实是这样。。

#include <cstdio>
#include <algorithm>
const int N=105; double f[N][N]; void Work(int T)
{
int a,b,n;
scanf("%d/%d%d",&a,&b,&n);
double p=1.0*a/b;
f[0][0]=1;
for(int i=1; i<=n; ++i)
{
f[i][0]=f[i-1][0]*(1-p);
for(int j=1; j<=i; ++j) f[i][j]=0;//!
for(int j=1; j*b<=i*a; ++j)
f[i][j]=f[i-1][j]*(1-p)+f[i-1][j-1]*p;
}
double q=0;
for(int i=0; i*b<=n*a; ++i) q+=f[n][i];
printf("Case #%d: %d\n",T,(int)(1.0/q));//直接.0lf是四舍五入...
} int main()
{
int T; scanf("%d",&T);
for(int i=1; i<=T; Work(i++));
return 0;
}

UVA.11427.Expect the Expected(期望)的更多相关文章

  1. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  2. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  3. UVA 11427 Expect the Expected (期望)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&pa ...

  4. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  5. UVA - 11427 Expect the Expected (概率dp)

    Some mathematical background. This problem asks you to compute the expected value of a random variab ...

  6. UVa 11427 - Expect the Expected

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. UVA 11427 Expect the Expected(DP+概率)

    链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 [思路] DP+概率 见白书. [代码] #include&l ...

  8. 11427 - Expect the Expected(概率期望)

    11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...

  9. UVA 11427 (概率DP+期望)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局, ...

随机推荐

  1. Python的常用内置函数介绍

    Python的常用内置函数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.取绝对值(abs) #!/usr/bin/env python #_*_coding:utf-8_ ...

  2. 工具类 | window批处理杀死指定端口进程

    window批处理杀死指定端口进程,注意保存时使用ansi格式,运行输入端口即可 @echo off setlocal enabledelayedexpansion set /p port=请输入端口 ...

  3. bzoj千题计划255:bzoj3572: [Hnoi2014]世界树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3572 明显需要构造虚树 点属于谁管理分三种情况: 1.属于虚树的点 2.在虚树上的边上的点 3.既不 ...

  4. bzoj千题计划253:bzoj2154: Crash的数字表格

    http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...

  5. springMvc + Maven 项目提示 hessian 依赖包 无法下载;

    首先 从 https://github.com/alibaba/dubbo/archive/master.zip 下载最新的 dubbo 源码包到本地某个目录, 解压出来: cmd 进入该目录: 执行 ...

  6. 使用sso(cas)的时候报单点登录service不匹配问题分析及解决

    最近在使用portal做企业门户网站,其中使用了sso.在集成了多个应用之后在portal中点击集成的应用报错 2017-05-31 08:37:16,950 ERROR [org.jasig.cas ...

  7. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  8. C型USB能阻止危险充电器通过USB传播恶意软件

    C型USB能阻止危险充电器通过USB传播恶意软件 C型USB设备(USB Type-C)的新型身份验证协议可以保护用户免受潜在的充电器损坏的风险,这种新型的USB还能减少被恶意软件的风险.基于密码的认 ...

  9. 【干货】查看windows文件系统中的数据—利用簇号查看文件与恢复文件

    前面我们使用这个软件发现了很多删除掉的数据,今天来看看簇.FAT文件系统中,存在一个簇的链接,我知道了簇1在哪里就可以顺藤摸瓜恢复所有的信息. 这里使用FAT 12为例子,FAT其他万变不离其宗,甚至 ...

  10. Longest Words

    Given a dictionary, find all of the longest words in the dictionary. Example Given { "dog" ...