1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3679  Solved: 2254
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

Solution

如果n很小的话,可以直接做数位DP,但是现在n很大,需要用到矩乘。

设F[i][j]表示准考证号前i位中匹配到不吉利数串的第j个的方案数。

我们很容易发现,F数组存在一定的转移关系。

转移时考虑当前匹配到不吉利串的第i个,下一个数字填0~9时,转移到匹配到不吉利串的第j个,匹配过程可以KMP,这样就可以构造出转移矩阵。

Code

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define mset(a, b) memset(a, b, sizeof(a))
const int maxn = ;
int n, m, MOD;
char s[maxn];
int nxt[maxn];
struct Matrix
{
int mat[maxn][maxn];
Matrix() { mset(mat, ); }
Matrix operator * (const Matrix &AI) const
{
Matrix ret;
REP(i, , m-)
REP(j, , m-)
{
ret.mat[i][j] = ;
REP(k, , m-) (ret.mat[i][j] += mat[i][k]*AI.mat[k][j]) %= MOD;
}
return ret;
}
}A, B; int main()
{
scanf("%d %d %d", &n, &m, &MOD);
scanf("%s", s+);
int j = ; nxt[] = ;
REP(i, , m)
{
while (j > && s[j+] != s[i]) j = nxt[j];
if (s[j+] == s[i]) j ++;
nxt[i] = j;
}
REP(i, , m-)
REP(j, , )
{
int t = i;
while (t > && s[t+]-'' != j) t = nxt[t];
if (s[t+]-'' == j) t ++;
if (t != m) B.mat[t][i] = (B.mat[t][i]+)%MOD;
}
REP(i, , m-) A.mat[i][i] = ;
while (n > )
{
if (n&) A = A*B;
B = B*B;
n >>= ;
}
int ans = ;
REP(i, , m-) ans = (ans+A.mat[i][])%MOD;
printf("%d\n", ans);
return ;
}

BZOJ 1009 HNOI 2008 GT考试 递推+矩乘的更多相关文章

  1. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  2. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  3. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  4. BZOJ 1019 :[SHOI2008]汉诺塔(递推)

    好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...

  5. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  6. 【BZOJ 1009】 [HNOI2008]GT考试

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...

  7. URAL 1009 K-based numbers(DP递推)

    点我看题目 题意 : K进制的N位数,不能有前导零,这N位数不能有连续的两个0在里边,问满足上述条件的数有多少个. 思路 : ch[i]代表着K进制的 i 位数,不含两个连续的0的个数. 当第 i 位 ...

  8. BZOJ 1089 严格n元树 (递推+高精度)

    题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就 ...

  9. BZOJ 1009 :[HNOI2008]GT考试(KPM算法+dp+矩阵快速幂)

    这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻k ...

随机推荐

  1. docker重新安装后无法启动

    问题描述: docker版本升级或者重新安装后,无法启动服务,出现如下报错: level=error msg="[graphdriver] prior storage driver over ...

  2. android studio run的时候一直卡在waiting for debug

    原因如下: 选择ok就可以,同时我们也可以从这里找到 平常遇到跟真机有关的问题,三步大法,1,插拔手机,2.adb kill-server;adb start-server 3.重启as

  3. Brief History of Machine Learning

    Brief History of Machine Learning My subjective ML timeline Since the initial standpoint of science, ...

  4. linux离线部署redis及redis.conf详解

    一.离线部署redis 由于博主部署的虚拟机没有网络也没有gcc编译器,所以就寻找具备gcc编译器的编译环境把redis编译安装好,Copy Redis安装目录文件夹到目标虚拟机的目录下.copy时r ...

  5. Tensorflow中的变量

    从初识tf开始,变量这个名词就一直都很重要,因为深度模型往往所要获得的就是通过参数和函数对某一或某些具体事物的抽象表达.而那些未知的数据需要通过学习而获得,在学习的过程中它们不断变化着,最终收敛达到较 ...

  6. CF258D Little Elephant and Broken Sorting (带技巧的DP)

    题面 \(solution:\) 这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇! \(f[i][j]:\)表示第 \(a_i\) 个数比 ...

  7. Django之初始庐山真面目

    Django可以说是基于Python语言的一款非常成熟的框架,其功能之强大,应用之广泛,开发之便捷,可以说每一个细节都值得一赞 最重要的是,Django其实是我们学习Python过程中非常重要的部分之 ...

  8. javascript 模拟按键点击提交

    上代码 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> & ...

  9. oracle数据库查询重复记录

    1.row_number()方法 1 2 3 4 5 6 7 8 9 10 11 SELECT     row_number () over (         PARTITION BY v.acti ...

  10. node.js开发web

    1.安装express框架 使用npm install -g express安装express后,在命令行中执行express,提示没有此命令 原因是在新版的express中命令行需要单独安装 npm ...