已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$
1)证明:对任意$n\in N^+,a_n<5$
2)证明:不存在$M\le4$,使得对任意$n,a_n<M$

证明:
1)显然$a_{n+1}>a_n,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{a_na_{n+1}}{n(n+1)}$
故$\dfrac{1}{a_n}<\dfrac{1}{a_{n+1}}+\dfrac{1}{n(n+1)}$ 累加得:$\dfrac{1}{a_3}<\dfrac{1}{a_n}+\dfrac{1}{3}-\dfrac{1}{n}$
由于$a_1=1,a_2=\dfrac{3}{2},a_3=\dfrac{15}{8}$代入上式得$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5}>\dfrac{1}{5}$.故$a_n<5(n\in N^+)$
2)由(1)$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5},a_n<\dfrac{5n}{n+5},(n\ge3)$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{\frac{5n}{n+5}a_n}{n(n+1)}=\dfrac{n^2+6n+10}{(n+1)(n+5)}a_n$
故$a_n\ge\dfrac{(n+1)(n+5)}{n^2+6n+10}a_{n+1}$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}\ge a_n+\dfrac{\frac{(n+1)(n+5)}{n^2+6n+10}a_na_{n+1}}{n(n+1)}=a_n+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}$
故$\dfrac{1}{a_n}\ge\dfrac{1}{a_{n+1}}+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}
\ge\dfrac{1}{a_{n+1}}+\dfrac{17}{20n(n+1)},(n\ge3)$
累加得$\dfrac{1}{a_3}\ge\dfrac{1}{a_n}+\dfrac{17}{20}(\dfrac{1}{3}-\dfrac{1}{n})$
代入$a_3=\dfrac{15}{8}$得,$a_n\ge\dfrac{20n}{5n+17}\rightarrow 4$
故不存在$M\le4$,使得对任意$n,a_n<M$

注:此类题型也较常见,但往往最后一步裂项放缩要观察一下。

MT【167】反复放缩的更多相关文章

  1. MT【26】ln(1+x)的对数平均放缩

    评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.

  2. MT【198】连乘积放缩

    (2018中科大自招最后一题)设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:(1)$a_n=n^3\left(1+\sum\limit ...

  3. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  4. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  5. MT【22】一道分母为混合型的放缩

    评:指数函数增长>幂函数增长>对数函数增长.

  6. MT【11】对数放缩题

    解答:C 评论:这里讲几个背景知识

  7. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  8. 【转载】jQuery动画连续触发、滞后反复执行解决办法

    转载: http://www.cnblogs.com/yuejin/archive/2012/12/18/2822595.html jQuery中slideUp .slideDown.animate等 ...

  9. for...in也反复执行语句,但它是用来操作对象的

    for...in也反复执行语句,但它是用来操作对象的

随机推荐

  1. lucas定理的证明

    http://baike.baidu.com/link?url=jJgkOWPSRMobN7Zk4kIrQAri8m0APxcxP9d-C6qSkIuembQekeRwUoEoBd6bwdidmoCR ...

  2. EZ 2018 02 26 NOIP2018 模拟赛(一)

    这次是校内OJ(HHHOJ)线上比赛,网址:http://211.140.156.254:2333/contest/51 (我去刚刚快写完了手贱关掉了) 这次总体难度也不高,T1&&T ...

  3. 汇编 if else

    知识点: if else 逆向还原代码 一.了解if else结构 sub esp, |. 8B45 FC MOV EAX,DWORD PTR SS:[EBP-] 0040102C |. 3B45 ...

  4. mfc 类模板

    类模板 创建类模板 添加成员变量 添加成员函数 定义类模板对象 一.创建类模板 template <class T,class T2> template <class T> 二 ...

  5. lm393

    电压比较芯片,供电电压和输出电压一致.

  6. ElasticSearch查询 第一篇:搜索API

    <ElasticSearch查询>目录导航: ElasticSearch查询 第一篇:搜索API ElasticSearch查询 第二篇:文档更新 ElasticSearch查询 第三篇: ...

  7. 【Direct2D1.1初探】Direct2D特效概览

    转载请注明出处:http://www.cnblogs.com/Ray1024 一.概述 Direct2D是一个基于Direct3D的2D图形API,可以利用硬件加速特性来提供高性能高质量的2D渲染.但 ...

  8. Js_增删改Cookie的值

    //获得cookie 的值function cookie(name) { var cookieArray = document.cookie.split("; "); //得到分割 ...

  9. Harbor私有镜像仓库无坑搭建

    转载:https://k8s.abcdocker.com/kubernetes_harbor.html 一.介绍 Docker容器应用的开发和运行路不开可靠的镜像管理,虽然Docker官方也提供了公共 ...

  10. 整理一些常用的前端CND加速库,VUE,Jquery,axios

    VUE https://cdn.staticfile.org/vue/2.2.2/vue.min.js Jquery https://cdn.bootcss.com/jquery/3.4.0/jque ...