已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$
1)证明:对任意$n\in N^+,a_n<5$
2)证明:不存在$M\le4$,使得对任意$n,a_n<M$

证明:
1)显然$a_{n+1}>a_n,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{a_na_{n+1}}{n(n+1)}$
故$\dfrac{1}{a_n}<\dfrac{1}{a_{n+1}}+\dfrac{1}{n(n+1)}$ 累加得:$\dfrac{1}{a_3}<\dfrac{1}{a_n}+\dfrac{1}{3}-\dfrac{1}{n}$
由于$a_1=1,a_2=\dfrac{3}{2},a_3=\dfrac{15}{8}$代入上式得$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5}>\dfrac{1}{5}$.故$a_n<5(n\in N^+)$
2)由(1)$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5},a_n<\dfrac{5n}{n+5},(n\ge3)$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{\frac{5n}{n+5}a_n}{n(n+1)}=\dfrac{n^2+6n+10}{(n+1)(n+5)}a_n$
故$a_n\ge\dfrac{(n+1)(n+5)}{n^2+6n+10}a_{n+1}$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}\ge a_n+\dfrac{\frac{(n+1)(n+5)}{n^2+6n+10}a_na_{n+1}}{n(n+1)}=a_n+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}$
故$\dfrac{1}{a_n}\ge\dfrac{1}{a_{n+1}}+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}
\ge\dfrac{1}{a_{n+1}}+\dfrac{17}{20n(n+1)},(n\ge3)$
累加得$\dfrac{1}{a_3}\ge\dfrac{1}{a_n}+\dfrac{17}{20}(\dfrac{1}{3}-\dfrac{1}{n})$
代入$a_3=\dfrac{15}{8}$得,$a_n\ge\dfrac{20n}{5n+17}\rightarrow 4$
故不存在$M\le4$,使得对任意$n,a_n<M$

注:此类题型也较常见,但往往最后一步裂项放缩要观察一下。

MT【167】反复放缩的更多相关文章

  1. MT【26】ln(1+x)的对数平均放缩

    评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.

  2. MT【198】连乘积放缩

    (2018中科大自招最后一题)设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:(1)$a_n=n^3\left(1+\sum\limit ...

  3. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  4. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  5. MT【22】一道分母为混合型的放缩

    评:指数函数增长>幂函数增长>对数函数增长.

  6. MT【11】对数放缩题

    解答:C 评论:这里讲几个背景知识

  7. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  8. 【转载】jQuery动画连续触发、滞后反复执行解决办法

    转载: http://www.cnblogs.com/yuejin/archive/2012/12/18/2822595.html jQuery中slideUp .slideDown.animate等 ...

  9. for...in也反复执行语句,但它是用来操作对象的

    for...in也反复执行语句,但它是用来操作对象的

随机推荐

  1. jqgrid 对编辑行填写的内容做格式验证

    有时,我们需要在基于jqgrid表格编辑行的单元格做规范验证.jqgrid提供有支持,通过设置字段的editrules属性来约束格式. 约束方式: 1.内置的约束参数 (required: true, ...

  2. jqgrid 谈谈给表格设置列头事件、行事件、内容事件

    往往我们需要给显示的jqgrid表格赋予事件功能,比如:列头事件.行事件.内容事件.需要的效果可能如下: 如你所见,以上的超链接和按钮均是绑定的事件.那分别如何实现这些事件的绑定呢? 一.行事件 行事 ...

  3. svn up时提示跳过某节点

    # svn up    提示跳过某某节点 解决办法: # svn revert 文件path 提示下,自己改的文件确定不要被revert了,那样你就merge就好了. svn命令可参考这个文章:htt ...

  4. Java IO详解(七)------随机访问文件流

    File 类的介绍:http://www.cnblogs.com/ysocean/p/6851878.html Java IO 流的分类介绍:http://www.cnblogs.com/ysocea ...

  5. C/C++函数调用方式

    __cdecl __fastcall与__stdcall,三者都是调用约定(Calling convention),它决定以下内容:1)函数参数的压栈顺序,2)由调用者还是被调用者把参数弹出栈,3)以 ...

  6. 判断库位是否参与MRP运算

    表 T001L 字段DISKZ (库存地点MRP标识)为空,参与MRP运算,为1不参与.

  7. 大数据入门第二十二天——spark(一)入门与安装

    一.概述 1.什么是spark 从官网http://spark.apache.org/可以得知: Apache Spark™ is a fast and general engine for larg ...

  8. JavaEE笔记(十四)

    #SSH配置文件整合笔记实例 spring-BaseBean.xml <?xml version="1.0" encoding="UTF-8"?> ...

  9. JavaScript快速入门-ECMAScript基础语法

    一.JavaScript引入方式 1.行内式 <script> alert(123); </script> 2.外链式 <script src='custom.js'&g ...

  10. 设计模式 笔记 工厂方法 Factory Methon

    //---------------------------15/04/09---------------------------- //factory method 工厂方法-------对象创建型模 ...