题面懒得复制,戳我戳我

Solution:

  • 其实这个差分是挺显然的,我们可以用\(s[i]\)表示从第\(1\)到\(i\)中间的收入和
  • 重点就在式子,比如读入\(a\),\(b\),\(c\),显然可以得到一个式子:$$s[b]-s[a-1]==c$$把这个式子变成不等式就是$$s[b]>=c+s[a-1]$$$$s[b]>=c+s[a-1]$$第二个式子又可以转换成$$s[a-1]<=-c+s[b]$$这就显然是从\(a-1\)连向\(b\)一条长度为\(c\)的边,从\(b\)连向\(a-1\)一条\(-c\)的边
  • 然后我们就可以跑\(SPFA\)了,这有一点就是,因为要满足所有条件,每天的收入是固定的,我们就只用如下操作:更新至的点如果为\(INF\)(初值),就更新,否则判断是否符合边的条件要求\(s[v]==s[u]+dis[u,v]\)(u为出发点,v为到达点)
  • 我傻逼的没有清空\(vis\)数组,WA了无数次(太愚蠢了)

BTW:这题还可以用并查集,可以去思考丢个链接吧,Awson太强辣


Code:

//It is coded by Ning_Mew on 3.29
#include<bits/stdc++.h>
using namespace std; const int maxn=1000+10; int T,n,m,INF;
int head[maxn],cnt=0,dist[maxn];
bool be[maxn];
struct Edge{int nxt,to,dis;}edge[maxn*2]; void add(int from,int to,int dis){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
int vis[maxn];
bool SPFA(int k,int ls){
queue<int>Q;while(!Q.empty())Q.pop();
vis[k]=ls;Q.push(k);be[k]=false;
dist[k]=0;
while(!Q.empty()){
int u=Q.front();Q.pop();vis[u]=ls-1;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;be[v]=false;
if(dist[v]==INF){
dist[v]=dist[u]+edge[i].dis;
if(vis[v]!=ls){
Q.push(v);
vis[v]=ls;
}
}
else{
if(dist[v]!=dist[u]+edge[i].dis)return false;
}
}
}return true;
}
void work(){
scanf("%d%d",&n,&m);
memset(head,0,sizeof(head));
memset(be,false,sizeof(be));cnt=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++){
int a,b,c;scanf("%d%d%d",&a,&b,&c);
add(a-1,b,c);be[a-1]=true;be[b]=true;
add(b,a-1,-1*c);
}
memset(dist,-0x5f,sizeof(dist));
INF=dist[0];
int ls=1;
for(int i=0;i<=n;i++){
if(be[i]==false)continue;
//cout<<i<<endl;
if(SPFA(i,++ls));else{
printf("false\n");
return;
}
}printf("true\n");
}
int main(){
scanf("%d",&T);
for(int i=1;i<=T;i++){work();}
return 0;
}

【题解】 [HNOI2005]狡猾的商人(差分约束)的更多相关文章

  1. BZOJ 1202: [HNOI2005]狡猾的商人( 差分约束 )

    好像很多人用并查集写的... 前缀和, 则 sumt - sums-1 = v, 拆成2条 : sumt ≤ sums-1 + v, sums-1 ≤ sumt - v 就是一个差分约束, 建图跑SP ...

  2. luogu 2294 [HNOI2005]狡猾的商人 差分约束

    一个差分约束模型,只需判一下有没有负环即可. #include <bits/stdc++.h> #define N 103 #define M 2004 #define setIO(s) ...

  3. LUOGU P2294 [HNOI2005]狡猾的商人(差分约束)

    [传送门] (https://www.luogu.org/problemnew/show/P2294) 解题思路 差分约束.先总结一下差分约束,差分约束就是解决一堆不等式混在一起,左边是差的形式,右边 ...

  4. BZOJ 1202 狡猾的商人 差分约束or带权并查集

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1202 题目大意: 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的 ...

  5. bzoj1202: [HNOI2005]狡猾的商人(差分约束)

    1202: [HNOI2005]狡猾的商人 题目:传送门 题解: 据说是带权并查集!蒟蒻不会啊!!! 可是听说lxj大佬用差分约束A了,于是开始一通乱搞. 设s[i]为前i个月的总收益,那么很容易就可 ...

  6. bzoj1202: [HNOI2005]狡猾的商人(并查集 差分约束)

    1202: [HNOI2005]狡猾的商人 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4127  Solved: 1981[Submit][Sta ...

  7. BZOJ[HNOI2005]狡猾的商人(差分约束)

    1202: [HNOI2005]狡猾的商人 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4969  Solved: 2496[Submit][Sta ...

  8. P2294 [HNOI2005]狡猾的商人(差分约束)

    P2294 [HNOI2005]狡猾的商人 对于每个$(x,y,w)$,连边$(x-1,y,w),(y,x-1,-w)$,表示前$y$个月的收益比前$x-1$个月的收益大$w$ 这样题目就转化为询问图 ...

  9. [HNOI2005]狡猾的商人 ,神奇做法——贪心

    洛谷P2294 [HNOI2005]狡猾的商人 ,神奇做法--贪心 看到大牛都是写的差分约束或带权并查集,本蒟蒻都不太会(还是用差分约束过了的QAQ),但是想出一种贪心的策略,运用神奇的优先队列实现. ...

  10. 洛谷P2294 [HNOI2005]狡猾的商人

    P2294 [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要 ...

随机推荐

  1. linux中分区、格式化文件系统、挂载

    以前学linux的时候,毕竟自己没搞运维,就只注重了很多命令的运用,没太在意文件系统这块.买了本linux的书,这部分看了点东西,记个笔记哈哈. 有个场景,比如说我们现在的服务器上存储不够用了,那么当 ...

  2. 在main函数前后执行的函数之 C语言

    在gcc中,可以使用attribute关键字,声明constructor和destructor,来指定了函数在main之前或之后运行,代码如下: #include <stdio.h> __ ...

  3. C#基础之.NET环境下WebConfig的加密

    在将ASP.NET项目部署到服务器上时,内网环境下Web.Config往往是直接复制过去.对于外网环境,则需要对Web.Config文件进行加密. .NET环境下一共提供了2种方式的加密功能,分别是D ...

  4. [Deep-Learning-with-Python]计算机视觉中的深度学习

    包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面 ...

  5. Linux随笔---tar命令

    一.解压 语法:tar  [主选项+辅选项]  文件或者目录 使用该命令时,主选项是必须要有的,它告诉tar要做什么事情,辅选项是辅助使用的,可以选用. 主选项:c:create:v:verbose: ...

  6. CS229笔记:分类与逻辑回归

    逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一 ...

  7. 定制 input[type="radio"] 和 input[type="checkbox"] 样式

    表单中,经常会使用到单选按钮和复选框,但是,input[type="radio"] 和 input[type="checkbox"] 的默认样式在不同的浏览器或 ...

  8. mpvue两小时,产出一个《点钞辅助工具》小程序

    CoffeeScript,Pug,Sass使用 以下内容门槛较高,如看不懂或觉得需要继续了解,结尾处放置了原视频流程与GitHub地址,欢迎琢磨与Star,谢谢. 文章不做技术语法解读,如不清楚,请前 ...

  9. Redis简介、安装、配置、启用学习笔记

    前一篇文章有介绍关系型数据库和非关系型数据库的差异,现在就来学习一下用的较广的非关系型数据库:Redis数据库 Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-v ...

  10. JavaScript快速入门-ECMAScript本地对象(Number)

    Number 对象是原始数值的包装对象. 创建一个Number对象:var myNum=new Number(value); 注意: 1.参数 value 是要创建的 Number 对象的数值,或是要 ...