leetcode刷题笔记172 阶乘后的零
题目描述:
给定一个整数 n,返回 n! 结果尾数中零的数量。
示例1:
输入:
输出:
解释: ! = , 尾数中没有零。
示例2:
输入:
输出:
解释: ! = , 尾数中有 个零.
说明: 你的解法应该为 O(logN) 时间复杂度。
题目分析:
要求末尾有多少个零,则该数应为x*10k 的形式等于x*(2k *5k)
也就是求该数分解质因子后有几个5就行,:如1*2*3*4*5=1*2*3*2*2*5(里面有一个5)所以结果为1个0
详见代码
解答代码:
class Solution {
public:
int trailingZeroes(int n) {
int sum=;
while(n>){
sum+=n/;
n/=;
} return sum;
}
};
Code
leetcode刷题笔记172 阶乘后的零的更多相关文章
- C#LeetCode刷题之#172-阶乘后的零(Factorial Trailing Zeroes)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3854 访问. 给定一个整数 n,返回 n! 结果尾数中零的数量. ...
- LeetCode 172. 阶乘后的零(Factorial Trailing Zeroes)
172. 阶乘后的零 172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. LeetCode172. Factorial Trai ...
- Java实现 LeetCode 172 阶乘后的零
172. 阶乘后的零 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! ...
- 172. 阶乘后的零 Java解法
https://leetcode-cn.com/problems/factorial-trailing-zeroes/ 172. 阶乘后的零 这题要完成其实要知道一个很巧妙的思想,就是阶乘里面,后面的 ...
- LeetCode刷题笔记和想法(C++)
主要用于记录在LeetCode刷题的过程中学习到的一些思想和自己的想法,希望通过leetcode提升自己的编程素养 :p 高效leetcode刷题小诀窍(这只是目前对我自己而言的小方法,之后会根据自己 ...
- Leetcode 172.阶乘后的零
阶乘后的零 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120 ...
- 18.9.10 LeetCode刷题笔记
本人算法还是比较菜的,因此大部分在刷基础题,高手勿喷 选择Python进行刷题,因为坑少,所以不太想用CPP: 1.买股票的最佳时期2 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. ...
- LeetCode刷题笔记 - 12. 整数转罗马数字
学好算法很重要,然后要学好算法,大量的练习是必不可少的,LeetCode是我经常去的一个刷题网站,上面的题目非常详细,各个标签的题目都有,可以整体练习,本公众号后续会带大家做一做上面的算法题. 官方链 ...
- Leetcode刷题笔记(双指针)
1.何为双指针 双指针主要用来遍历数组,两个指针指向不同的元素,从而协同完成任务.我们也可以类比这个概念,推广到多个数组的多个指针. 若两个指针指向同一数组,遍历方向相同且不会相交,可以称之为滑动窗口 ...
随机推荐
- od 转储 二进制文件常用命令
od : NAME od - dump files in octal and other formats 常用命令: ➜ Downloads od -t x1 -Ax /etc/ld.so.cach ...
- 复合梯形公式、复合辛普森公式 matlab
1. 用1阶至4阶Newton-Cotes公式计算积分 程序: function I = NewtonCotes(f,a,b,type) % syms t; t=findsym(sym(f)); I= ...
- Eclipse 插件安装报错问题(已解决)
错误信息提示: An error occurred while installing the items session context was:(profile=epp.package.jee, p ...
- ICP点云配准原理及优化
ICP算法简介 根据点云数据所包含的空间信息,可以直接利用点云数据进行配准.主流算法为最近迭代算法(ICP,Iterative Closest Point),该算法是根据点云数据首先构造局部几何特征, ...
- BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
- excel工作表密码破解方法
在日常工作中,大家有时会遇到过这样的情况:使用Excel编制的报表.表格.程序等,在单元格中设置了公式.函数等,为了防止其他人修改您的设置或者防止您自己无意中修改,您可能会使用Excel的工作表保护功 ...
- java任务调度框架
https://www.ibm.com/developerworks/cn/java/j-lo-taskschedule/
- Kafka学习之路 (一)Kafka的简介
一.简介 1.1 概述 Kafka是最初由Linkedin公司开发,是一个分布式.分区的.多副本的.多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/ng ...
- shiro实战系列(十一)之Caching
Shiro 开发团队明白在许多应用程序中性能是至关重要的.Caching 是从第一天开始第一个建立在 Shiro 中的一流功 能,以确保安全操作保持尽可能的快. 然而,Caching 作为一个概念 ...
- Python3 常见数据类型的转换
Python3 常见数据类型的转换 一.数据类型的转换,你只需要将数据类型作为函数名即可 OCP培训说明连接:https://mp.weixin.qq.com/s/2cymJ4xiBPtTaHu16H ...