BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接
洛谷原题链接
很明显的树形\(DP\)。
因为记录每个点的贡献很难,所以我们可以统计每条边的贡献。
对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有\(B_y\),白点有\(W_y\),边权为\(w\),那么这条边的贡献就是\((W_x\times W_y + B_x\times B_y)\times w\)。
然后设计\(DP\)状态,定义\(f[x][v]\),表示以\(x\)为根的子树里分配\(v\)个黑点的最大贡献。
初始化为\(-1\),在\(dfs\)到\(x\)点时,再初始化\(f[x][0] = f[x][1] = 0\)。
设\(y\)表示\(x\)的一个儿子, \(k\)为题目中所述。
于是有转移方程:
\(\qquad\qquad i = \min\{k, size[x]\} \longrightarrow 0\)
\(\qquad\qquad\quad j = 0\longrightarrow \min\{i, size[y]\}\)
\(\qquad\qquad\qquad f[x][i] = \max\{f[x][i], f[x][i - j] + f[y][j] + value\}\qquad if\quad f[x][i - j] \ne -1\)
\(i\)是在以\(x\)为根的子树中分配多少黑点,\(j\)是在以\(y\)为根的子树中分配多少黑点。
\(value\)是通过\(x\to y\)这条边所新增的贡献,即\(value = (j \times (k - j) + (size[y] - j)\times (n - size[y] - k + j)) \times w_{x\to y}\)。
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 2010;
int fi[N], di[N << 1], ne[N << 1], da[N << 1], si[N], l, k, n;
ll f[N][N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline ll maxn(ll x, ll y)
{
return x > y ? x : y;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
void dfs(int x, int fa)
{
int i, j, v, y, o;
si[x] = 1;
f[x][0] = f[x][1] = 0;
for (i = fi[x]; i; i = ne[i])
if ((y = di[i]) ^ fa)
{
dfs(y, x);
si[x] += si[y];
}
for (v = fi[x]; v; v = ne[v])
if ((y = di[v]) ^ fa)
for (i = minn(k, si[x]); ~i; i--)
for (j = 0, o = minn(i, si[y]); j <= o; j++)
if (~f[x][i - j])
f[x][i] = maxn(f[x][i], f[x][i - j] + f[y][j] + (1LL * j * (k - j) + 1LL * (si[y] - j) * (n - si[y] - k + j)) * da[v]);
}
int main()
{
int i, x, y, z;
n = re();
k = re();
for (i = 1; i < n; i++)
{
x = re();
y = re();
z = re();
add(x, y, z);
add(y, x, z);
}
memset(f, -1, sizeof(f));
dfs(1, 0);
printf("%lld", f[1][k]);
return 0;
}
BZOJ4033或洛谷3177 [HAOI2015]树上染色的更多相关文章
- 洛谷 3177 [HAOI2015] 树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- 洛谷P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷P3178 [HAOI2015]树上操作(线段树)
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷 P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
随机推荐
- vue router 懒加载实现
在vue-cli脚手架中router文件夹中有index.js文件,里面的内容是 import Vue from 'vue'import Router from 'vue-router'import ...
- 函数putText()在图片上写文字
#include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace c ...
- appium的内存泄露问题
appium的一个内存泄露的问题 标签(空格分隔): appium 我们在做移动端的测试后时候,经常会用到appium 但是有时候我们跑一个小时候/2个小时候时候,会遇到appium报错的信息: ap ...
- asp.net之发送邮件2
public void SendMail(string from, string to, List<string> cc, string subject, string body) { M ...
- python 内置函数(二) 进阶函数 递归内容及二分法查找 知识点
1,lambda: 匿名函数 2.sorgted() 排序函数 3,filter() 过滤函数 筛选 4,map() 映射函数 5.递归 6.二分法 一. 匿名函数: lambda lamb ...
- fiddler对浏览器、app抓包及证书安装(转)
http://blog.csdn.net/u011608531/article/details/50838227 1.fiddler对浏览器抓包 1.1 对浏览器的http的抓包 Capturing开 ...
- SQLdeveloper换成windows主题后不显示的情况
这几天因为换电脑需要重新安装数据库, 因为换成了64位系统, 原先的oracle数据库也换成了64位, 但是plsql还是要用32位的, 经过深思熟虑也没装, 请教了一个同学改用oracle自带的sq ...
- 与服务器同步工程(expect脚本)
先看下我实际用的例子: #!/usr/bin/expect spawn rsync -vazu ssh-src/src wayne@192.168.5.2:~/projects/ expect &qu ...
- poj 1170状压dp
题目链接:https://vjudge.net/problem/POJ-1170 题意:输入n,表示有那种物品,接下来n行,每行a,b,c三个变量,a表示物品种类,b是物品数量,c代表物品的单价.接下 ...
- 【转】自动化测试框架: pytest&allure ,提高自动化健壮性和稳定性
序 在之前,我写过一个系列“从零开始搭建一个简单的ui自动化测试框架(pytest+selenium+allure)”,在这个系列里,主要介绍了如何从零开始去搭建一个可用的自动化工程框架,但是还缺乏了 ...