题解

复杂度怎么算也要2s的题怎么0.5s就跑完了,迷啊

这个题简直算完复杂度不敢写,写了就赚飞了好吧

根据裴蜀定理,显然选出的数和P的gcd是w的约数

我们考虑枚举\(P\)的约数,上限当然是\(\sqrt{P}\)个,写个暴力搜一下发现最多也就13000个左右

然后我们把每个数处理成\(gcd(a_i,P)\)

重标号所有约数

那么我们写个\(n^2\)的\(dp[i][j]\)表示处理到第\(i\)个约数,然后这些数的\(gcd\)是第\(j\)个约数

然后再\(n^2\)将\(val[j]\)的约数\(val[i]\)的\(dp[tot][i]\)累加进\(ans[j]\)里

查询的时候看看\(gcd(w_i,P)\)是哪个约数就行

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 100005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int update(int &x,int y) {
x = inc(x,y);
}
int N,Q,P;
struct node {
int x,num,next;
}E[100005];
int head[mo + 5],sumE,val[13005],tot,pw[1000005],cnt[13005];
int f[2][13005],ans[13005];
void add(int x,int y) {
int u = x % mo;
E[++sumE].x = x;
E[sumE].num = y;
E[sumE].next = head[u];
head[u] = sumE;
}
int Query(int x) {
int u = x % mo;
for(int i = head[u] ; i ; i = E[i].next) {
if(E[i].x == x) return E[i].num;
}
}
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
void Init() {
read(N);read(Q);read(P);
for(int i = 1 ; i <= P / i ; ++i) {
if(P % i == 0) {
val[++tot] = i;
if(i != P / i) val[++tot] = P / i;
}
}
sort(val + 1,val + tot + 1);
for(int i = 1 ; i <= tot ; ++i) add(val[i],i);
pw[0] = 1;
int a;
for(int i = 1 ; i <= N ; ++i) {
pw[i] = mul(pw[i - 1],2);
read(a);cnt[Query(gcd(a,P))]++;
}
}
void Solve() {
int cur = 0;
f[cur][Query(P)] = 1;
for(int i = 1 ; i <= tot ; ++i) {
if(!cnt[i]) continue;
memset(f[cur ^ 1],0,sizeof(f[cur ^ 1]));
for(int j = 1 ; j <= tot ; ++j) {
update(f[cur ^ 1][Query(gcd(val[i],val[j]))],mul(f[cur][j],pw[cnt[i]] - 1));
update(f[cur ^ 1][j],f[cur][j]);
}
cur ^= 1;
}
for(int i = 1 ; i <= tot ; ++i) {
for(int j = 1 ; j <= i ; ++j) {
if(val[i] % val[j] == 0) update(ans[i],f[cur][j]);
}
}
int w;
for(int i = 1 ; i <= Q ; ++i) {
read(w);
out(ans[Query(gcd(w,P))]);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【LOJ】#2523. 「HAOI2018」奇怪的背包的更多相关文章

  1. LOJ#2552. 「CTSC2018」假面(期望 背包)

    题意 题目链接 Sol 多年以后,我终于把这题的暴力打出来了qwq 好感动啊.. 刚开始的时候想的是: 设\(f[i][j]\)表示第\(i\)轮, 第\(j\)个人血量的期望值 转移的时候若要淦这个 ...

  2. loj#2552. 「CTSC2018」假面

    题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...

  3. Loj #3102. 「JSOI2019」神经网络

    Loj #3102. 「JSOI2019」神经网络 题目背景 火星探险队发现,火星人的思维方式与人类非常不同,是因为他们拥有与人类很不一样的神经网络结构.为了更好地理解火星人的行为模式,JYY 对小镇 ...

  4. Loj #3045. 「ZJOI2019」开关

    Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...

  5. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  6. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  7. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  8. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  9. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

随机推荐

  1. 【bzoj1069】最大土地面积

    Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接下来N行,每行2个数x,y ...

  2. AC自动机——多个kmp匹配

    (并不能自动AC) 介绍: Aho-Corasick automaton,最经典的处理多个模式串的匹配问题. 是kmp和字典树的结合. 精髓与灵魂: ①利用trie处理多个模式串 ②引入fail指针. ...

  3. OpenStack 网络服务 Neutron 私有网络构建(十九)

    本章内容基于之前提供者网络构建的基础上进行改动,之前文章参考如下: Openstack 网络服务 Neutron介绍和控制节点部署 (九) Openstack 网络服务 Neutron计算节点部署(十 ...

  4. ELKStack-生产案例项目实战(十一)

    ELKStack-生产案例项目实战 1.收集ES和apache日志,入redis input { file { path => "/etc/httpd/logs/access_log& ...

  5. 生成ssh-key for GIthub

    在Github里,如果我们想通过ssh的方式进行身份验证,我们就需要建立ssh-key: 方法一: git GUI,点击help,选择Generate ssh key

  6. Hadoop基础-MapReduce的Join操作

    Hadoop基础-MapReduce的Join操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.连接操作Map端Join(适合处理小表+大表的情况) no001 no002 ...

  7. python命名空间与闭包函数详解

    python命名空间与闭包函数详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客主要介绍的知识点如下: 1>.三元运算 2>.命名空间 3>.globa ...

  8. matplotlib交互模式与pacharm单独Figure设置

    matplotlib交互模式与pacharm单独Figure设置 觉得有用的话,欢迎一起讨论相互学习~Follow Me Matpotlib交互模式 在运行python程序时有时候需要生成以下的 动态 ...

  9. SQL记录-PLSQL过程

    PL/SQL过程   子程序是一个程序单元/模块执行特定的任务.这些子程序被组合以形成更大的程序.这基本上是被称为“模块化设计”.子程序可以调用由另一个子程序或程序被称为调用程序. 子程序可以创建: ...

  10. POJ - 1753 Flip Game(状压枚举)

    https://vjudge.net/problem/POJ-1753 题意 4*4的棋盘,翻转其中的一个棋子,会带动邻接的棋子一起动.现要求把所有棋子都翻成同一种颜色,问最少需要几步. 分析 同一个 ...