题解

怎么觉得都像树dp,不像贪心

但是树dp确实做不了

把每个节点的值设置为樱花+儿子数

把儿子合并到父亲上就是父亲的剩余容量加上儿子的值-1

每次在父亲的时候将儿子的值排序然后能加就加上

因为儿子如果不加进去那么之后的操作与儿子再也没有关系了,儿子影响的只有父亲,那么只是能让父亲一个节点被加入,那么和现在就加入儿子是等价的

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 2000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef long double db;
typedef unsigned int u32;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M,val[MAXN],ans,id[MAXN],cnt;
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE;
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
bool cmp(int a,int b) {
return val[a] < val[b];
}
void Init() {
read(N);read(M);
for(int i = 1 ; i <= N ; ++i) {
read(val[i]);
}
int k,p;
for(int i = 1 ; i <= N ; ++i) {
read(k);val[i] += k;
for(int j = 1 ; j <= k ; ++j) {
read(p);++p;add(i,p);
}
}
}
void dfs(int u) {
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
dfs(v);
}
cnt = 0;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;id[++cnt] = v;
}
sort(id + 1,id + cnt + 1,cmp);
for(int i = 1 ; i <= cnt ; ++i) {
if(M - val[u] >= val[id[i]] - 1) {val[u] += val[id[i]] - 1;++ans;}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
dfs(1);
out(ans);enter;
}

【LOJ】#2118. 「HEOI2015」兔子与樱花的更多相关文章

  1. BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心

    问题描述 LG4107 题解 首先,我们可以直接令结点 \(x\) 的权值为 \(c[x]+son_x\) ,发现将 \(x,y\) 合并,相当于增加 \(c[x]+c[y]-1\) 的重量. 容易想 ...

  2. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  3. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  4. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  5. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  6. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  7. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  8. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  9. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

随机推荐

  1. 【刷题】LOJ 6009 「网络流 24 题」软件补丁

    题目描述 某公司发现其研制的一个软件中有 \(n\) 个错误,随即为该软件发放了一批共 \(m\) 个补丁程序.每一个补丁程序都有其特定的适用环境,某个补丁只有在软件中包含某些错误而同时又不包含另一些 ...

  2. CRM 报表导出excel时指定sheet名

    如图所示,设置PageName即可: 这样导出excel时,sheet的名就有了:

  3. 洛谷 P4070 [SDOI2016]生成魔咒 解题报告

    P4070 [SDOI2016]生成魔咒 题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 \(1\).\(2\) 拼凑起来形成一个魔咒串 \([1,2]\). 一个魔咒 ...

  4. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  5. 前端学习 -- Html&Css -- 相对定位 绝对定位 固定定位

    相对定位 - 定位指的就是将指定的元素摆放到页面的任意位置,通过定位可以任意的摆放元素. - 通过position属性来设置元素的定位. -可选值: static:默认值,元素没有开启定位: rela ...

  6. JS中的new操作符

    在JS中定义一个构造函数,然后用new操作符构造对象obj,JS代码如下. function Base(){ this.name = "swf"; this.age =20; } ...

  7. linux服务器安装mysql并配置外网访问

    linux服务器安装mysql并配置外网访问 更新系统,如果不运行该命令,直接安装mysql,会出现"有几个软件包无法下载 sudo apt-get update 安装mysql sudo ...

  8. SQL记录-PLSQL游标

    PL/SQL游标 Oracle会创建一个存储区域,被称为上下文区域,用于处理SQL语句,其中包含需要处理的语句,例如所有的信息,行数处理,等等. 游标是指向这一上下文的区域. PL/SQL通过控制光标 ...

  9. javascript使用事件委托

    事件委托是javascript中一个很重要的概念,其基本思路就是利用了事件冒泡的机制,给上级(父级)元素触发事件的dom对象上绑定一个处理函数.在当有需要很多dom对象要绑定事件的情况下,可以使用事件 ...

  10. 关于An internal error occurred during: "Launching MVC on Tomcat 6.x". java.lang.NullPointerException异常处理

    一大早上来启动打开myeclipse就报一个这样的错误An internal error occurred during: "Launching MVC on Tomcat  6.x&quo ...