stacking算法原理

1:对于Model1,将训练集D分为k份,对于每一份,用剩余数据集训练模型,然后预测出这一份的结果

2:重复上面步骤,直到每一份都预测出来。得到次级模型的训练集

3:得到k份测试集,平均后得到次级模型的测试集

4: 对于Model2、Model3…..重复以上情况,得到M维数据

5:选定次级模型,进行训练预测 ,一般这最后一层用的是LR。

优缺点:

优点:

       1、  采用交叉验证方法构造,稳健性强;

       2、  可以结合多个模型判断结果,进行次级训练,效果好;

缺点:

1、构造复杂,难以得到相应规则,商用上难以解释。

代码:

import numpy as np

from sklearn.model_selection import KFold

def get_stacking(clf, x_train, y_train, x_test, n_folds=10):

"""

这个函数是stacking的核心,使用交叉验证的方法得到次级训练集

x_train, y_train, x_test 的值应该为numpy里面的数组类型 numpy.ndarray .

如果输入为pandas的DataFrame类型则会把报错"""

train_num, test_num = x_train.shape[0], x_test.shape[0]

second_level_train_set = np.zeros((train_num,))

second_level_test_set = np.zeros((test_num,))

test_nfolds_sets = np.zeros((test_num, n_folds))

kf = KFold(n_splits=n_folds)

for i,(train_index, test_index) in enumerate(kf.split(x_train)):

x_tra, y_tra = x_train[train_index], y_train[train_index]

x_tst, y_tst =  x_train[test_index], y_train[test_index]

clf.fit(x_tra, y_tra)

second_level_train_set[test_index] = clf.predict(x_tst)

test_nfolds_sets[:,i] = clf.predict(x_test)

second_level_test_set[:] = test_nfolds_sets.mean(axis=1)

return second_level_train_set, second_level_test_set

#我们这里使用5个分类算法,为了体现stacking的思想,就不加参数了

from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier,

GradientBoostingClassifier, ExtraTreesClassifier)

from sklearn.svm import SVC

rf_model = RandomForestClassifier()

adb_model = AdaBoostClassifier()

gdbc_model = GradientBoostingClassifier()

et_model = ExtraTreesClassifier()

svc_model = SVC()

#在这里我们使用train_test_split来人为的制造一些数据

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

iris = load_iris()

train_x, test_x, train_y, test_y = train_test_split(iris.data, iris.target, test_size=0.2)

train_sets = []

test_sets = []

for clf in [rf_model, adb_model, gdbc_model, et_model, svc_model]:

train_set, test_set = get_stacking(clf, train_x, train_y, test_x)

train_sets.append(train_set)

test_sets.append(test_set)

meta_train = np.concatenate([result_set.reshape(-1,1) for result_set in train_sets], axis=1)

meta_test = np.concatenate([y_test_set.reshape(-1,1) for y_test_set in test_sets], axis=1)

#使用决策树作为我们的次级分类器

from sklearn.tree import DecisionTreeClassifier

dt_model = DecisionTreeClassifier()

dt_model.fit(meta_train, train_y)

df_predict = dt_model.predict(meta_test)

print(df_predict)

stacking算法原理及代码的更多相关文章

  1. AC-BM算法原理与代码实现(模式匹配)

    AC-BM算法原理与代码实现(模式匹配) AC-BM算法将待匹配的字符串集合转换为一个类似于Aho-Corasick算法的树状有限状态自动机,但构建时不是基于字符串的后缀而是前缀.匹配 时,采取自后向 ...

  2. 集成学习值Adaboost算法原理和代码小结(转载)

    在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...

  3. 【机器学习】Apriori算法——原理及代码实现(Python版)

    Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是 ...

  4. 排序算法原理及代码实现(c#)

    1.插入排序 把第一个元素看做已排序数组放在有序数组中,从第二个元素开始,依次把无序数组元素取出和有序数组中的元素逐个比较,并放在有序数组的正确位置上. /// <summary> /// ...

  5. 广告系统中weak-and算法原理及编码验证

    wand(weak and)算法基本思路 一般搜索的query比较短,但如果query比较长,如是一段文本,需要搜索相似的文本,这时候一般就需要wand算法,该算法在广告系统中有比较成熟的应 该,主要 ...

  6. 机器学习之决策树一-ID3原理与代码实现

    决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实 ...

  7. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  8. 第一篇:K-近邻分类算法原理分析与代码实现

    前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. ...

  9. 深入一致性哈希(Consistent Hashing)算法原理,并附100行代码实现

    转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和J ...

随机推荐

  1. day61

    Vue 八.重要指令 v-bind <!-- 值a --> <div v-bind:class='"a"'></div> <!-- 变量a ...

  2. 第12章 GPIO输入—按键检测

    第12章     GPIO输入—按键检测 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fi ...

  3. ORACLE SEQUENCE 具体解释

    1.    About Sequences(关于序列) 序列是数据库对象一种. 多个用户能够通过序列生成连续的数字以此来实现主键字段的自己主动.唯一增长,而且一个序列可为多列.多表同一时候使用. 序列 ...

  4. [SDOI2012]任务安排 BZOJ2726 斜率优化+二分查找

    网上的题解...状态就没有一个和我一样的...这让我有些无从下手... 分析: 我们考虑,正常的斜率优化满足x(i)单调递增,k(i)单调递增,那么我们就可以只用维护一个单调队列满足对于当前的x(i) ...

  5. kettle学习笔记(八)——kettle查询步骤与连接步骤

    一.概述 查询步骤: 用来查询数据源里的数据并合并到主数据流中 . 连接步骤: 结果集通过关键字进行连接 .(与前面的UNION不同) 二.查询步骤 1.流查询 流查询示例:(注意上文中的流查询的限制 ...

  6. vb6/ASP FORMAT MM/DD/YYYY

    VB6或者ASP 格式化时间为 MM/dd/yyyy 格式,竟然没有好的办法, Format 或者FormatDateTime 竟然结果和系统设置的区域语言的日期和时间格式相关.意思是尽管你用诸如 F ...

  7. 20155236范晨歌_Web基础

    20155236范晨歌_Web基础 目录 实践目标 Apache 前端编程 后端编程 PHP MYSQL & 后端 简单SQL注入与XSS 发帖和会话管理 实践目标 (1)Web前端HTML ...

  8. 20155339平措卓玛 Exp2 后门原理与实践

    20155339平措卓玛Exp2 后门原理与实践 基础问题 (1)例举你能想到的一个后门进入到你系统中的可能方式? 答:下载并安装某个程序,这个程序可以正常的并且完整的为我们提供服务,但是在开发改程序 ...

  9. tensorflow batch

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟 ...

  10. 《Flask Web开发实战:入门、进阶与原理解析(李辉著 )》PDF+源代码

    一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲Flask的书了 下载:链接: https://pan.baidu.com/s/1ioEfLc7Hc15jFpC-DmEYBA 提取码: ...