dsu on tree板子题。这个trick保证均摊O(nlogn)的复杂度,要求资瓷O(1)将一个元素插入集合,清空集合时每个元素O(1)删除。(当然log的话就变成log^2了)

  具体的,每次先遍历轻儿子的子树,暴力求得所需信息,每遍历完一棵轻子树都将其信息清空。然后遍历重子树,暴力求得所需信息,保留信息,再重新遍历轻子树将信息合并,最后加上根本身得到原子树的信息。

  复杂度证明考虑每个点的信息被统计的次数,显然这只与其到根的路径上轻边条数有关,于是复杂度O(nlogn)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],p[N],fa[N],size[N],son[N],cnt[N],mx,t;
ll ans[N],cur;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void make(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
fa[edge[i].to]=k;
make(edge[i].to);
size[k]+=size[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
}
void update(int x,int op)
{
cnt[x]+=op;
if (op==)
{
if (cnt[x]>mx) mx=cnt[x],cur=;
if (cnt[x]>=mx) cur+=x;
}
else mx=cur=;
}
void add(int k,int op)
{
update(a[k],op);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]) add(edge[i].to,op);
}
void dfs(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k]) dfs(edge[i].to),add(edge[i].to,-);
if (son[k]) dfs(son[k]);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k]) add(edge[i].to,);
update(a[k],);ans[k]=cur;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("600E.in","r",stdin);
freopen("600E.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
make();
dfs();
for (int i=;i<=n;i++) printf("%I64d ",ans[i]);
return ;
}

Codeforces 600E Lomsat gelral(dsu on tree)的更多相关文章

  1. 【CF600E】Lomsat gelral(dsu on tree)

    [CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...

  2. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  3. Codeforces 600E - Lomsat gelral 「$Dsu \ on \ tree$模板」

    With $Dsu \ on \ tree$ we can answer queries of this type: How many vertices in the subtree of verte ...

  4. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  5. Codeforces 600E Lomsat gelral (树上启发式合并)

    题目链接 Lomsat gelral 占坑……等深入理解了再来补题解…… #include <bits/stdc++.h> using namespace std; #define rep ...

  6. 【cf600】E. Lomsat gelral(dsu on tree)

    传送门 题意: 求子树众数. 思路: \(dsu\ on\ tree\)模板题,用一个桶记录即可. 感觉\(dsu\ on\ tree\)这个算法的涉及真是巧妙呀,保留重链的信息,不断暴力轻边,并且不 ...

  7. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  8. 【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)

    (这题在洛谷主站居然搜不到--还是在百度上偶然看到的) 题目描述 给一棵根为1的树,每次询问子树颜色种类数 输入输出格式 输入格式: 第一行一个整数n,表示树的结点数 接下来n-1行,每行一条边 接下 ...

  9. Codeforces.600E.Lomsat gelral(dsu on tree)

    题目链接 dsu on tree详见这. \(Description\) 给定一棵树.求以每个点为根的子树中,出现次数最多的颜色的和. \(Solution\) dsu on tree模板题. 用\( ...

随机推荐

  1. C++之内联函数

    C++语言新增关键字 inline,用于将一个函数声明为内联函数.在程序编译时,编译器会将内联函数调用处用函数体替换,这一点类似于C语言中的宏扩展. 采用内联函数可以有效避免函数调用的开销,程序执行效 ...

  2. P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  3. day50

    JS基础 一.JS语言介绍 1.概念 浏览器脚本语言 可以编写运行在浏览器上的代码程序 属于解释性.弱语言类型编程语言 2.组成 ES语法:ECMAScript.主要版本ES5和ES6 DOM:文档对 ...

  4. c# HttpWebRequest Cookie 设置到 webBrowser 控件

    [DllImport("wininet.dll", CharSet = CharSet.Auto, SetLastError = true)] public static exte ...

  5. Express app.listen 函数了解

    最近一直在学习如何用原生的 Node.js 来做一个网站.在写的同时也在学习 Express 源码. 一直觉得 Express 开启服务器的方法挺有趣的,就看了一下. 在 Express 运行的时候会 ...

  6. MFC CTreeCtrl运用

    CTreeCtrl运用 删除无效资源 递归的运用 自写遍历目录函数 递归遍历所有子目录 一.删除无效资源 .打开资源文件 .找到无效链接删掉 二.自写遍历目录函数 CFileFind findfile ...

  7. MFC CHotKeyCtrl控件

    知识点: CHotKeyCtrl控件 获取热键数据 注册热键 响应热键事件 一.CHotKeyCtrl控件 void SetHotKey( WORD wVirtualKeyCode, WORD wMo ...

  8. JavaScript快速入门-简介

    一.JavaScript历史(摘自w3school) JavaScript 是因特网上最流行的脚本语言,它存在于全世界所有 Web 浏览器中,能够增强用户与 Web 站点和 Web 应用程序之间的交互 ...

  9. MongoDB的账户与权限管理及在Python与Java中的登录

    本文主要介绍了MongoDB的账户新建,权限管理(简单的),以及在Python,Java和默认客户端中的登陆. 默认的MongoDB是没有账户权限管理的,也就是说,不需要密码即可登陆,即可拥有读写的权 ...

  10. abcdocker 的博客

    技术参考总结 abcdocker 的博客 09月 3 篇 20日 Centos7 图形化创建KVM 10日 Nginx 代理Google 进行*** 10日 mac 安装装逼神器cmatrix 08月 ...