BZOJ2744 HEOI2012朋友圈(二分图匹配)
先考虑B国。容易发现a xor b mod 2=0即二进制末位相同,那么可以据此将所有人分成两部分,每一部分各自是一个完全图。然后再将a or b有奇数个1的边连上,现在需要求的就是这样一个图里的最大团。我们知道最大团=反图最大独立集,这个图的反图显然是一个二分图,那么跑二分图匹配就可以求出这个了。
A国同样根据二进制末位分成两部分。显然不可能选择末位相同的两人。于是暴力枚举在A国选择哪些人,只留下B国与其有边的人跑匹配就可以了。
不管复杂度。
在一些非常弱智的地方wa了好长时间,没救。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 3010
int n,m,k,a[N],b[N],p[N],q[N],tag[N],match[N],t,ans,tot,cnt;
bool flag[N][N],f[N][N];
struct data{int to,nxt;
}edge[N*N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
bool hungary(int k,int from)
{
for (int i=p[k];i;i=edge[i].nxt)
if (tag[edge[i].to]!=from)
{
tag[edge[i].to]=from;
if (!match[edge[i].to]||hungary(match[edge[i].to],from))
{
match[edge[i].to]=k;
return ;
}
}
return ;
}
void pre()
{
memset(p,,m+<<);
memset(match,,m+<<);
memset(tag,,m+<<);
tot=;t=;cnt=;
}
void solve()
{
for (int j=;j<=cnt;j++)
for (int k=;k<=cnt;k++)
if (f[q[j]][q[k]]) addedge(q[j],q[k]);
for (int j=;j<=cnt;j++)
if (b[q[j]]&) tot+=hungary(q[j],q[j]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2744.in","r",stdin);
freopen("bzoj2744.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=m;i++) b[i]=read();
for (int i=;i<=k;i++)
{
int x=read(),y=read();
flag[x][y]=;
}
for (int i=;i<=m;i++)
for (int j=;j<=m;j++)
if ((b[i]&)&&!(b[j]&))
{
int x=b[i]|b[j],y=;
while (x) y^=,x-=x&-x;
if (!y) f[i][j]=,addedge(i,j);
}
for (int i=;i<=m;i++)
if (b[i]&) tot+=hungary(i,i);
ans=m-tot;
for (int i=;i<=n;i++)
{
pre();
for (int j=;j<=m;j++)
if (flag[i][j]) q[++cnt]=j;
solve();
ans=max(ans,cnt-tot+);
}
for (int x=;x<n;x++)
for (int y=x+;y<=n;y++)
if ((a[x]^a[y])&)
{
pre();
for (int j=;j<=m;j++)
if (flag[x][j]&&flag[y][j]) q[++cnt]=j;
solve();
ans=max(ans,cnt-tot+);
}
cout<<ans;
return ;
}
BZOJ2744 HEOI2012朋友圈(二分图匹配)的更多相关文章
- bzoj2744 [HEOI2012]朋友圈——二分图匹配
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2744 首先,求一个图的最大团等价于求它的补图的最大独立集,而二分图的最大独立集 = 总点数 ...
- bzoj 2744: [HEOI2012]朋友圈 二分图匹配
2744: [HEOI2012]朋友圈 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 612 Solved: 174[Submit][Status] ...
- BZOJ2744:[HEOI2012]朋友圈(最大团,乱搞)
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- BZOJ2744: [HEOI2012]朋友圈
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2744 最大团是一个np问题.. 对于本题,做它的逆问题,建反图做最大独立集. 对于A最多取出两 ...
- 【BZOJ 2744】 2744: [HEOI2012]朋友圈 (最大团,二分图匹配,构图)
2744: [HEOI2012]朋友圈 Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他 ...
- 【二分图】HEOI2012 朋友圈
题目内容 洛谷链接 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大 ...
- 【BZOJ 2744 】[HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- 【刷题】BZOJ 2744 [HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- luogu P2423 [HEOI2012]朋友圈 (最大团)
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目.两个国家看成是 ...
随机推荐
- 微信小程序开发 [06] 一些补充的知识点
0.写在前面的话 前几章的内容串联起来,基本上已经能写比较基础的小程序页面逻辑了,当然,wxml和wxss的我并没有写,因为前端我也并不擅长.这个章节,准备随便叨叨,然后补充一些之前没有提到的基础知识 ...
- 20155313 杨瀚 《网络对抗技术》实验九 Web安全基础
20155313 杨瀚 <网络对抗技术>实验九 Web安全基础 一.实验目的 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 二.基础问题回答 1.SQL注入攻 ...
- Linux下Maven+SVN自动打包脚本
公司的开发环境每次部署项目都很麻烦,需要手动打包并上传上去.这个太麻烦了,所以就准备搞个自动打包的脚本.脚本自动从svn代码库里面更新最新的代码下来,然后maven打包,最后把war包丢到to ...
- 列表生成式+过滤器(filter)+映射(map)+lambda总结
这些都是python的特色,不仅强大,而且好用,配合起来使用更是无敌. 零.lambda lambda用于产生一个匿名表达式,组成部分为:lambda + ‘函数表达式’ ‘函数表达式’由一个冒号加上 ...
- 【Java框架型项目从入门到装逼】第十一节 用户新增之把数据传递到后台
让我们继续来做"主线任务",这一节,我们来做具体的用户新增功能.首先,为了简单起见,我把主页面改了一些,改的是列表那一块.删去了一些字段,和数据库表对应一致: 现在,我们要实现一个 ...
- 几种flash存储芯片的用途和分类
1.IIC EEPROM------容量小,采用的是IIC通信协议:用于在掉电时,存系统配置参数,比如屏幕亮度等.常用芯片型号有 AT24C02.FM24C02.CAT24C02等,其常见的封装多为D ...
- 【第十三课】监控Linux系统状态
目录 1.查看系统负载命令:w.uptime 2.vmstat详解 3.top动态查看负载 4.sar命令(监控网卡流量) 5.nload命令(监控网卡流量) 6.iostat iotop(监控IO性 ...
- 利用OVS+FLOODLIGHT,为数据表添加VLAN_ID和MPLS
话不多说,直接上拓扑: 我这里是用主机h1 (10.0.0.1)ping 主机h2(10.0.0.2) 1.添加VLAN标签 v1: sudo ovs-ofctl add-flow m1-s1 in_ ...
- 华为手机自带浏览器不支持 ES6 语法
原文地址:https://caochangkui.github.io/huawei-es6/ 华为手机自带浏览器对 es6 语法的支持度极差,哪怕最新的荣耀10 手机也有该毛病!所以,移动端项目开发中 ...
- Spring Boot (十四): Spring Boot 整合 Shiro-登录认证和权限管理
这篇文章我们来学习如何使用 Spring Boot 集成 Apache Shiro .安全应该是互联网公司的一道生命线,几乎任何的公司都会涉及到这方面的需求.在 Java 领域一般有 Spring S ...