题意:

  求树上最长上升路径

解析:

  树状数组版: 998ms

    edge[u][w] 代表以u为一条路的终点的小于w的最长路径的路的条数

·    那么edge[v][w] = max(edge[u][w-1]) + 1;

因为w最小是0  所以所有的w都+1

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+, INF = 0x7fffffff;
int n, m, maxx = -INF;
map<int, int> edge[maxn];
int lowbit(int x)
{
return x & -x;
}
int qp(int u, int w)
{
int ret = ;
for(int i=w; i>; i-=lowbit(i))
ret = max(ret, edge[u][i]);
return ret;
} int build(int u, int w, int ans)
{
while(w)
{
edge[u][w] = max(edge[u][w], ans);
w += lowbit(w);
} } int main()
{
int u, v, w;
cin >> n >> m;
for(int i=; i<m; i++)
{
cin >> u >> v >> w;
maxx = max(maxx, w);
build(v, +, qp(u, w)+);
}
int max_ret = -INF;
for(int i=; i<=n; i++)
max_ret = max(max_ret, qp(i, ));
cout << max_ret << endl; return ;
}

主席树: 108ms

每棵树都建立100000个结点 每次更新小于w的结点的sum

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff;
int n, m, cnt, root[maxn], a[maxn], x, y, k;
struct node{int l, r, sum;}T[maxn*];
void update(int l, int r, int& x, int w, int ci)
{
if(!x) x = ++cnt; T[x].sum = max(T[x].sum, ci);
if(l == r) return;
int mid = (l + r) / ;
if(mid >= w) return update(l, mid, T[x].l, w, ci);
else return update(mid+, r, T[x].r, w, ci);
} int query(int l, int r, int x, int k)
{
if(l == r) return T[x].sum;
int mid = (l + r)/;
if(mid >= k) return query(l, mid, T[x].l, k);
else return max(T[T[x].l].sum, query(mid+, r, T[x].r, k));
} int main()
{
int u, v, w, ret = -INF;
rd(n), rd(m);
rep(i, , m)
{
rd(u), rd(v), rd(w);
w++;
int tmp = query(, , root[u], w-) + ;
update(, , root[v], w, tmp);
ret = max(ret, tmp);
}
cout<< ret <<endl; return ;
}

Pathwalks CodeForces - 960F(主席树 || 树状数组)的更多相关文章

  1. CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)

    The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...

  2. Codeforces 960F Pathwalks ( LIS && 树状数组 )

    题意 : 给出若干个边,每条边按照给出的顺序编号,问你找到一条最长的边权以及边的编号同时严格升序的一条路径,要使得这条路径包含的边尽可能多,最后输出边的条数 分析 :  这题和 LIS 很相似,不同的 ...

  3. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  4. bzoj1901--树状数组套主席树

    树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...

  5. HDU 3333 | Codeforces 703D 树状数组、离散化

    HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333 这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序.这里我们需要离散化 ...

  6. BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

    [题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...

  7. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  8. 【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题

    达神题解传送门:http://blog.csdn.net/dad3zz/article/details/50638360 说一下我对这个模板的理解: 看到这个方法很容易不知所措,因为动态K值需要套树状 ...

  9. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

随机推荐

  1. Android自定义布局的背景在多分辨率的情况下设置fill_parent时背景不能够横向全屏的问题解决

    问题描述:最近做了一个自定义的控件LinearLayout就是公用的底部菜单条,在指定分辨率下(例如:480x800,480x854)下背景是正常的,但是当程序运行到非指定(默认)的分辨率下就不正常了 ...

  2. HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)

    World Exhibition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. 关于原子哥ENC28J60网络通信模块接收数据代码的一点疑惑

    ---恢复内容开始--- 这几天做STM32的ENC28J60网络通信模块,自己在原子哥的代码上进行修改测试,,发现一个问题,电脑和板子进行通信的时候总隔一段时间板子就死机了. 使用自己的就不会死机, ...

  4. 曾经的UCOSii

    首先记住一句话:实时操作系统,并非真的实时.操作系统必须有延时,一个系统执行好几个任务,实质是任务之间不停的切换,有延时才有切换任务的余地,如果没有.....应该都见识过卡机,任务切换不过来了 如果你 ...

  5. jqgrid 使用自带的行编辑

    上篇jqgrid 单击行启用行编辑,切换行保存原编辑行 本篇,说说使用jqgrid自带的行编辑 1)设置需要编辑的列  editable: true colModel: [ { label: '字段编 ...

  6. sphinx搜索 笔记

    架构图: 安装sphinx,见文章http://my.oschina.net/ptk/blog/495435 sphinx关键的配置文件.在里面写查询的sql. 两个关键命令:indexer生成查询索 ...

  7. 算法篇(前序)——Java的集合

    菜鸟拙见,望请纠正:附上JDK参考文档(中文文档和英文文档):链接:https://pan.baidu.com/s/14KDmCtQxeGCViq7e0zENjA 密码:e9xs  以及算法篇全文链接 ...

  8. 1.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——手册页

    我们运行的命令行程序,通常在技术上称作shell, 它包含了一个非常强大(也很神秘)的工具,我们将用它来学习更多可用的命令.这个工具本身就是个称作'man'的命令('manual'的简写).它的参数是 ...

  9. 有关C++的数据类型(int,long,short,float,double等等)

    再看C++ prime plus 第六版的时候 对数据类型又一次有些乱了,在看了这篇博客后,重新清晰起来了. 有关C++的数据类型(int,long,short,float,double等等)

  10. 微服务监控zipkin、skywalking以及日志ELK监控系列

    0.整体架构 整体架构目录:ASP.NET Core分布式项目实战-目录 一.目录 1.zipkin监控 2.skywalking监控 3.ELK日志监控 asp.net Core 交流群:78746 ...