Description

You are given an undirected unweighted tree consisting of \(n\) vertices.

An undirected tree is a connected undirected graph with \(n−1\) edges.

Your task is to choose two pairs of vertices of this tree (all the chosen vertices should be distinct) \((x_1,y_1)\) and \((x_2,y_2)\) in such a way that neither \(x_1\) nor \(y_1\) belong to the simple path from \(x_2\) to \(y_2\) and vice versa (neither \(x_2\) nor \(y_2\) should not belong to the simple path from \(x_1\) to \(y_1\)).

It is guaranteed that it is possible to choose such pairs for the given tree.

Among all possible ways to choose such pairs you have to choose one with the maximum number of common vertices between paths from \(x_1\) to \(y_1\) and from \(x_2\) to \(y_2\). And among all such pairs you have to choose one with the maximum total length of these two paths.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

The length of the path is the number of edges in it.

The simple path is the path that visits each vertex at most once.

Input

The first line contains an integer \(n\) — the number of vertices in the tree \((6 \le n \le 2 \cdot 10^5)\).

Each of the next \(n−1\) lines describes the edges of the tree.

Edge \(i\) is denoted by two integers \(u_i\) and \(v_i\), the labels of vertices it connects \((1\le u_i,v_i\le n, u_i \neq v_i)\).

It is guaranteed that the given edges form a tree.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

Output

Print any two pairs of vertices satisfying the conditions described in the problem statement.

It is guaranteed that it is possible to choose such pairs for the given tree.

Examples

Input

7
1 4
1 5
1 6
2 3
2 4
4 7

Output

3 6
7 5

Input

9
9 3
3 5
1 2
4 3
4 7
1 7
4 6
3 8

Output

2 9
6 8

Input

10
6 8
10 3
3 7
5 8
1 7
7 2
2 9
2 8
1 4

Output

10 6
4 5

Input

11
1 2
2 3
3 4
1 5
1 6
6 7
5 8
5 9
4 10
4 11

Output

9 11
8 10

Note

The picture corresponding to the first example:

The intersection of two paths is \(2\) (vertices \(1\) and \(4\)) and the total length is \(4+3=7\).

The picture corresponding to the second example:

The intersection of two paths is \(2\) (vertices \(3\) and \(4\)) and the total length is \(5+3=8\).

The picture corresponding to the third example:

The intersection of two paths is \(3\) (vertices \(2\), \(7\) and \(8\)) and the total length is \(5+5=10\).

The picture corresponding to the fourth example:

The intersection of two paths is \(5\)(vertices \(1\), \(2\), \(3\), \(4\) and \(5\)) and the total length is \(6+6=12\).

Solution

题意:给定一棵树,找两组点\((x_1, y_1)\)和\((x_2, y_2)\),使得\(x_1,y_1\)不在\(x_2\)和\(y_2\)之间的路径上,\(x_2,y_2\)不在\(x_1\)和\(y_1\)之间的路径上,要求:

  • \(x_1,y_1\)之间的路径与\(x_2,y_2\)之间的路径的重合边数最多
  • 满足第一个条件的前提下,两条路径的长度之和最大

我们考虑两条路径的公共路径,不妨记作\((x, y)\),\(x\)和\(y\)的LCA记作\(a\),则\(a\)或者是\(x\)和\(y\)中的一个,或者是\(x\)与\(y\)路径上的其他节点,所以我们先求出每个点的度大于2的后代的最大深度,以及每个点往父亲方向能够到达的最远距离,然后再一次DFS,对于任何一个点\(u\):

  • 如果\(u\)有两个孩子节点具有度大于2的后代,则尝试更新答案
  • 否则,若\(u\)只有一个孩子节点具有度大于2的后代,且\(u\)自身的度大于2,则尝试更新答案
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200011;
struct triple {
  triple(int _u = 0, int _v1 = 0, int _v2 = 0) : u(_u), v1(_v1), v2(_v2) {}
  int u, v1, v2;
  bool operator<(const triple &b) const {return u < b.u;}
};
vector<int> w[maxn];
int deg[maxn], dep[maxn];
int x1, y1, x2, y2;
pair<pair<int, int>, triple> val[maxn]; // <<deg=3的后代(u)的最大深度, u到两个最远后代(v1, v2)的距离之和>, <u, v1, v2>>
pair<int, int> ans;
pair<int, int> mxdep[maxn], updis[maxn]; // <最远距离, u>
vector<pair<pair<int, int>, int>> downdis[maxn]; // <<后代(u)的最大深度, u>, 到该后代的路径上的第一个点>
void dfs1(int u, int d, int pre) {
  dep[u] = d;
  mxdep[u] = make_pair(d, u);
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs1(v, d + 1, u);
    mxdep[u] = max(mxdep[u], mxdep[v]);
    downdis[u].push_back(make_pair(mxdep[v], v));
  }
  sort(downdis[u].begin(), downdis[u].end(), greater<pair<pair<int, int>, int>>());
}
void dfs2(int u, int pre) {
  if (~pre) {
    updis[u] = make_pair(1 + updis[pre].first, updis[pre].second);
    auto tp = downdis[pre][0].second == u ? downdis[pre][1].first : downdis[pre][0].first;
    if (downdis[pre].size() > 1) {
      updis[u] = max(updis[u], make_pair(tp.first + 1, tp.second));
    }
  } else {
    updis[u] = make_pair(0, u);
  }
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs2(v, u);
  }
}
void dfs3(int u, int pre) {
  vector<pair<pair<pair<int, int>, triple>, int>> vec;
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs3(v, u);
    if (val[v].first.first) {
      vec.push_back(make_pair(val[v], v));
    }
  }
  if (vec.size() >= 2) {
    sort(vec.begin(), vec.end(), greater<pair<pair<pair<int, int>, triple>, int>>());
    auto &x = vec[0].first, &y = vec[1].first;
    val[u] = x;
    int a = x.first.first + y.first.first - 2 * dep[u];
    int b = x.first.second + y.first.second;
    auto c = make_pair(a, b);
    if (c > ans) {
      ans = c;
      x1 = x.second.v1, y1 = y.second.v1;
      x2 = x.second.v2, y2 = y.second.v2;
    }
  } else {
    if (vec.size() == 1) {
      val[u] = vec[0].first;
    } else if (deg[u] >= 3) {
      assert(downdis[u].size() >= 2);
      auto &x = downdis[u][0].first, &y = downdis[u][1].first;
      int tp = x.first + y.first - 2 * dep[u];
      val[u] = make_pair(make_pair(dep[u], tp), triple(u, x.second, y.second));
    } else {
      val[u] = make_pair(make_pair(0, 0), triple());
    }
    if (vec.size() == 1 && deg[u] >= 3) {
      vector<pair<int, int>> cand;
      cand.push_back(updis[u]);
      int up = min(3, (int)downdis[u].size());
      for (int i = 0; i < up; ++i) {
        if (downdis[u][i].second == vec[0].second)  continue;
        cand.push_back(downdis[u][i].first);
      }
      assert(cand.size() >= 2);
      sort(cand.begin(), cand.end(), greater<pair<int, int>>());
      auto &x = vec[0].first;
      int a = x.first.first - dep[u];
      int b = x.first.second + cand[0].first + cand[1].first;
      auto c = make_pair(a, b);
      if (c > ans) {
        ans = c;
        x1 = x.second.v1, y1 = cand[0].second;
        x2 = x.second.v2, y2 = cand[1].second;
      }
    }
  }
}
int main() {
  int n;
  scanf("%d", &n);
  for (int i = 1; i < n; ++i) {
    int u, v;
    scanf("%d%d", &u, &v);
    w[u].push_back(v);
    w[v].push_back(u);
    ++deg[u]; ++deg[v];
  }
  ans = make_pair(0, 0);
  dfs1(1, 0, -1);
  dfs2(1, -1);
  dfs3(1, -1);
  printf("%d %d\n%d %d\n", x1, y1, x2, y2);
  return 0;
}

CodeForces 1073F Choosing Two Paths的更多相关文章

  1. [codeforces 293]B. Distinct Paths

    [codeforces 293]B. Distinct Paths 试题描述 You have a rectangular n × m-cell board. Some cells are alrea ...

  2. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  3. Codeforces 219D Choosing Capital for Treeland

    http://codeforces.com/problemset/problem/219/D 题目大意: 给出一棵树,但是它的边是有向边,选择一个城市,问最少调整多少条边的方向能使一个选中城市可以到达 ...

  4. (纪念第一道完全自己想的树DP)CodeForces 219D Choosing Capital for Treeland

    Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes inpu ...

  5. CodeForces 219D Choosing Capit

    题目链接:http://codeforces.com/contest/219/problem/D 题目大意: 给定一个n个节点的数和连接n个节点的n - 1条有向边,现在要选定一个节点作为起始节点,从 ...

  6. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  7. 【CodeForces】870 F. Paths

    [题目]F. Paths [题意]给定数字n,图上有编号为1~n的点,两点当且仅当gcd(u,v)≠1时有连边,定义d(u,v)为两点间最短距离(若不连通则为0),求Σd(u,v),1<=u&l ...

  8. Codeforces 219D Choosing Capital for Treeland:Tree dp

    题目链接:http://codeforces.com/problemset/problem/219/D 题意: 给你一棵树,n个节点. 树上的边都是有向边,并且不一定是从父亲指向儿子的. 你可以任意翻 ...

  9. Codeforces 643G - Choosing Ads(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑 \(p>50\) 的时候怎么处理,也就是求一个区间的绝对众数.我们知道众数这个东西是不能用线段树直接维护的,因为对于区间 ...

随机推荐

  1. 【LLVM笔记】0x00 初识LLVM 链接类型

    模块结构 LLVM程序是由若干的模块(Module)组成,每个模块中包含有一些函数.全局变量和符号表. 这些模块可能由LLVM的连接器组合在一起,组合的过程将会整合这些函数和全局变量的定义,整合他们的 ...

  2. 03-02_配置weblogic domain

    配置Domain 图形化界面: [Windows] Windows菜单 [windows] config.cmd [Unix/Linux] config.sh 命令行界面: [windows] con ...

  3. Shell 脚本合集

    0. 说明  Shell 脚本合集 1. xcall.sh xcall.sh 编写为了为了同时对多台服务器进行操作,编写完成之后,将其发送到 /usr/local/bin 下 #!/bin/bash ...

  4. JRebel for Hybris ,Idea and Windows

    参考: Jrebel官网参考地址:https://manuals.zeroturnaround.com/jrebel/standalone/hybris.html Wiki Hybris参考地址:ht ...

  5. WCF 基于 WinForm 宿主 发布

    ServiceHost Host = new ServiceHost(typeof(ServiceHTTP)); //绑定 System.ServiceModel.Channels.Binding h ...

  6. 阿里八八Alpha阶段Scrum(3/12)

    今日进度 叶文滔: 实现了悬浮按钮的拖动. 问题困难:第三方库调入不成功,多级悬浮按钮的实现仍未完成. 刘晓: 完成注册.修改密码的UI部分,创建了注册Activity,修改密码Activity. 问 ...

  7. 【Alpha 冲刺】 5/12

    今日任务总结 人员 今日原定任务 完成情况 遇到问题 贡献值 胡武成 建立数据库 未完成 设计表结构的时候,有些逻辑没有设计好,重新review一番设想的功能才初步确定表结构 孙浩楷 根据UI设计, ...

  8. Idea2018版本建的项目总是找不到主类

    最近更新idea到2018,总是遇见无法加载到主类,刚开始以为是装的过程有什么搞错了,但重装好几遍都是,换成2017又恢复正常,最后发现聪明的同学找到了个偏门可以解决. 那就是先创建文件夹,然后在创建 ...

  9. Invalid action class configuration that references an unknown class named [XX] .

    多次遇到这个错误,难以解决,有时候出现,有时候没有,很神奇,今天发现了一点端倪,虽然说不上找到了所有导致这个bug的原因.至少,也是很主要的一种了. 其实,透过结果,如果debug用心,一行代码一行代 ...

  10. CHECKEDLISTBOX用法总结

    C# CHECKEDLISTBOX用法总结   一般认为:foreach (object obj in checkedListBox1.SelectedItems)即可遍历选中的值. 其实这里遍历的只 ...