CodeForces 1073F Choosing Two Paths
Description
You are given an undirected unweighted tree consisting of \(n\) vertices.
An undirected tree is a connected undirected graph with \(n−1\) edges.
Your task is to choose two pairs of vertices of this tree (all the chosen vertices should be distinct) \((x_1,y_1)\) and \((x_2,y_2)\) in such a way that neither \(x_1\) nor \(y_1\) belong to the simple path from \(x_2\) to \(y_2\) and vice versa (neither \(x_2\) nor \(y_2\) should not belong to the simple path from \(x_1\) to \(y_1\)).
It is guaranteed that it is possible to choose such pairs for the given tree.
Among all possible ways to choose such pairs you have to choose one with the maximum number of common vertices between paths from \(x_1\) to \(y_1\) and from \(x_2\) to \(y_2\). And among all such pairs you have to choose one with the maximum total length of these two paths.
It is guaranteed that the answer with at least two common vertices exists for the given tree.
The length of the path is the number of edges in it.
The simple path is the path that visits each vertex at most once.
Input
The first line contains an integer \(n\) — the number of vertices in the tree \((6 \le n \le 2 \cdot 10^5)\).
Each of the next \(n−1\) lines describes the edges of the tree.
Edge \(i\) is denoted by two integers \(u_i\) and \(v_i\), the labels of vertices it connects \((1\le u_i,v_i\le n, u_i \neq v_i)\).
It is guaranteed that the given edges form a tree.
It is guaranteed that the answer with at least two common vertices exists for the given tree.
Output
Print any two pairs of vertices satisfying the conditions described in the problem statement.
It is guaranteed that it is possible to choose such pairs for the given tree.
Examples
Input
7
1 4
1 5
1 6
2 3
2 4
4 7
Output
3 6
7 5
Input
9
9 3
3 5
1 2
4 3
4 7
1 7
4 6
3 8
Output
2 9
6 8
Input
10
6 8
10 3
3 7
5 8
1 7
7 2
2 9
2 8
1 4
Output
10 6
4 5
Input
11
1 2
2 3
3 4
1 5
1 6
6 7
5 8
5 9
4 10
4 11
Output
9 11
8 10
Note
The picture corresponding to the first example:

The intersection of two paths is \(2\) (vertices \(1\) and \(4\)) and the total length is \(4+3=7\).
The picture corresponding to the second example:

The intersection of two paths is \(2\) (vertices \(3\) and \(4\)) and the total length is \(5+3=8\).
The picture corresponding to the third example:

The intersection of two paths is \(3\) (vertices \(2\), \(7\) and \(8\)) and the total length is \(5+5=10\).
The picture corresponding to the fourth example:

The intersection of two paths is \(5\)(vertices \(1\), \(2\), \(3\), \(4\) and \(5\)) and the total length is \(6+6=12\).
Solution
题意:给定一棵树,找两组点\((x_1, y_1)\)和\((x_2, y_2)\),使得\(x_1,y_1\)不在\(x_2\)和\(y_2\)之间的路径上,\(x_2,y_2\)不在\(x_1\)和\(y_1\)之间的路径上,要求:
- \(x_1,y_1\)之间的路径与\(x_2,y_2\)之间的路径的重合边数最多
- 满足第一个条件的前提下,两条路径的长度之和最大
我们考虑两条路径的公共路径,不妨记作\((x, y)\),\(x\)和\(y\)的LCA记作\(a\),则\(a\)或者是\(x\)和\(y\)中的一个,或者是\(x\)与\(y\)路径上的其他节点,所以我们先求出每个点的度大于2的后代的最大深度,以及每个点往父亲方向能够到达的最远距离,然后再一次DFS,对于任何一个点\(u\):
- 如果\(u\)有两个孩子节点具有度大于2的后代,则尝试更新答案
- 否则,若\(u\)只有一个孩子节点具有度大于2的后代,且\(u\)自身的度大于2,则尝试更新答案
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200011;
struct triple {
triple(int _u = 0, int _v1 = 0, int _v2 = 0) : u(_u), v1(_v1), v2(_v2) {}
int u, v1, v2;
bool operator<(const triple &b) const {return u < b.u;}
};
vector<int> w[maxn];
int deg[maxn], dep[maxn];
int x1, y1, x2, y2;
pair<pair<int, int>, triple> val[maxn]; // <<deg=3的后代(u)的最大深度, u到两个最远后代(v1, v2)的距离之和>, <u, v1, v2>>
pair<int, int> ans;
pair<int, int> mxdep[maxn], updis[maxn]; // <最远距离, u>
vector<pair<pair<int, int>, int>> downdis[maxn]; // <<后代(u)的最大深度, u>, 到该后代的路径上的第一个点>
void dfs1(int u, int d, int pre) {
dep[u] = d;
mxdep[u] = make_pair(d, u);
for (int v : w[u]) {
if (v == pre) continue;
dfs1(v, d + 1, u);
mxdep[u] = max(mxdep[u], mxdep[v]);
downdis[u].push_back(make_pair(mxdep[v], v));
}
sort(downdis[u].begin(), downdis[u].end(), greater<pair<pair<int, int>, int>>());
}
void dfs2(int u, int pre) {
if (~pre) {
updis[u] = make_pair(1 + updis[pre].first, updis[pre].second);
auto tp = downdis[pre][0].second == u ? downdis[pre][1].first : downdis[pre][0].first;
if (downdis[pre].size() > 1) {
updis[u] = max(updis[u], make_pair(tp.first + 1, tp.second));
}
} else {
updis[u] = make_pair(0, u);
}
for (int v : w[u]) {
if (v == pre) continue;
dfs2(v, u);
}
}
void dfs3(int u, int pre) {
vector<pair<pair<pair<int, int>, triple>, int>> vec;
for (int v : w[u]) {
if (v == pre) continue;
dfs3(v, u);
if (val[v].first.first) {
vec.push_back(make_pair(val[v], v));
}
}
if (vec.size() >= 2) {
sort(vec.begin(), vec.end(), greater<pair<pair<pair<int, int>, triple>, int>>());
auto &x = vec[0].first, &y = vec[1].first;
val[u] = x;
int a = x.first.first + y.first.first - 2 * dep[u];
int b = x.first.second + y.first.second;
auto c = make_pair(a, b);
if (c > ans) {
ans = c;
x1 = x.second.v1, y1 = y.second.v1;
x2 = x.second.v2, y2 = y.second.v2;
}
} else {
if (vec.size() == 1) {
val[u] = vec[0].first;
} else if (deg[u] >= 3) {
assert(downdis[u].size() >= 2);
auto &x = downdis[u][0].first, &y = downdis[u][1].first;
int tp = x.first + y.first - 2 * dep[u];
val[u] = make_pair(make_pair(dep[u], tp), triple(u, x.second, y.second));
} else {
val[u] = make_pair(make_pair(0, 0), triple());
}
if (vec.size() == 1 && deg[u] >= 3) {
vector<pair<int, int>> cand;
cand.push_back(updis[u]);
int up = min(3, (int)downdis[u].size());
for (int i = 0; i < up; ++i) {
if (downdis[u][i].second == vec[0].second) continue;
cand.push_back(downdis[u][i].first);
}
assert(cand.size() >= 2);
sort(cand.begin(), cand.end(), greater<pair<int, int>>());
auto &x = vec[0].first;
int a = x.first.first - dep[u];
int b = x.first.second + cand[0].first + cand[1].first;
auto c = make_pair(a, b);
if (c > ans) {
ans = c;
x1 = x.second.v1, y1 = cand[0].second;
x2 = x.second.v2, y2 = cand[1].second;
}
}
}
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i < n; ++i) {
int u, v;
scanf("%d%d", &u, &v);
w[u].push_back(v);
w[v].push_back(u);
++deg[u]; ++deg[v];
}
ans = make_pair(0, 0);
dfs1(1, 0, -1);
dfs2(1, -1);
dfs3(1, -1);
printf("%d %d\n%d %d\n", x1, y1, x2, y2);
return 0;
}
CodeForces 1073F Choosing Two Paths的更多相关文章
- [codeforces 293]B. Distinct Paths
[codeforces 293]B. Distinct Paths 试题描述 You have a rectangular n × m-cell board. Some cells are alrea ...
- Codeforces 219D. Choosing Capital for Treeland (树dp)
题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...
- Codeforces 219D Choosing Capital for Treeland
http://codeforces.com/problemset/problem/219/D 题目大意: 给出一棵树,但是它的边是有向边,选择一个城市,问最少调整多少条边的方向能使一个选中城市可以到达 ...
- (纪念第一道完全自己想的树DP)CodeForces 219D Choosing Capital for Treeland
Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes inpu ...
- CodeForces 219D Choosing Capit
题目链接:http://codeforces.com/contest/219/problem/D 题目大意: 给定一个n个节点的数和连接n个节点的n - 1条有向边,现在要选定一个节点作为起始节点,从 ...
- Codeforces 219D - Choosing Capital for Treeland(树形dp)
http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...
- 【CodeForces】870 F. Paths
[题目]F. Paths [题意]给定数字n,图上有编号为1~n的点,两点当且仅当gcd(u,v)≠1时有连边,定义d(u,v)为两点间最短距离(若不连通则为0),求Σd(u,v),1<=u&l ...
- Codeforces 219D Choosing Capital for Treeland:Tree dp
题目链接:http://codeforces.com/problemset/problem/219/D 题意: 给你一棵树,n个节点. 树上的边都是有向边,并且不一定是从父亲指向儿子的. 你可以任意翻 ...
- Codeforces 643G - Choosing Ads(线段树)
Codeforces 题目传送门 & 洛谷题目传送门 首先考虑 \(p>50\) 的时候怎么处理,也就是求一个区间的绝对众数.我们知道众数这个东西是不能用线段树直接维护的,因为对于区间 ...
随机推荐
- TreeView失去焦点时亮显选中状态
Windows Form下设置属性即可. TreeView.HideSelection = false
- 数据库小组第N次小组会议
时间:5.30晚,9:30 ~ 11:30 主题:讨论android app与服务器之间数据同步的技术选型与实现 与会人:陈兆庭,黄志鹏,吴雪晴 讨论内容: 大体分析 关于数据同步,整体上有两部分,用 ...
- 美图DPOS以太坊教程(Docker版)
一.前言 最近,需要接触区块链项目的主链开发,在EOS.BTC.ethereum.超级账本这几种区块链技术当中,相互对比后,最终还是以go-ethereum为解决方案. 以ethereum为基准去找解 ...
- JAVAEE——SSH项目实战01:SVN介绍、eclipse插件安装和使用方法
1 学习目标 1.掌握svn服务端.svn客户端.svn eclipse插件安装方法 2.掌握svn的基本使用方法 2 svn介绍 2.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对 ...
- SQL Server数据库中外键强制约束的好处是什么,什么时候设置外键非强制约束?(转载)
Sql Server: What is the benefit of using “Enforce foreign key constraint” when it's set to “NO”? 问 I ...
- sysbench使用
1 部署 1.1 官方主页 https://github.com/Percona-Lab/sysbench-tpcc https://github.com/akopytov/sysbench 1. ...
- 转:在网站开发中很有用的8个 jQuery 效果【附源码】
原文地址:http://www.cnblogs.com/lhb25/p/amazing-jquery-effects.html jQuery 作为最优秀 JavaScript 库之一,改变了很多人编写 ...
- apache 允许 访问软链接 ( Apache won't follow symlinks (403 Forbidden) )
当我们在 apache 中 进行访问 www 文件夹之外的目录的时候,我们可以使用软链接的方式来进行协助访问. 我在 html 文件夹 下面创建 了 如下软链接 link: [root@dhcp-- ...
- Hadoop 的序列化
1. 序列化 1.1 序列化与反序列化的概念 序列化:是指将结构化对象转化成字节流在网上传输或写到磁盘进行永久存储的过程 反序列化:是指将字节流转回结构化对象的逆过程 1.2 序列化的应用 序列化用于 ...
- 【转】Java学习---快速掌握RPC原理及实现
[原文]https://www.toutiao.com/i6592365493435236872/ RPC概述 RPC(Remote Procedure Call)即远程过程调用,也就是说两台服务器 ...