解读Unity中的CG编写Shader系列十 (光滑的镜面反射(冯氏着色))
前文完成了最基本的镜面反射着色器,单平行光源下的逐顶点着色(per-vertex lighting),又称为古罗着色(Gouraud shading)。这篇文章作为后续讨论更光滑的镜面反射方式,逐像素着色(per-pixcel lighting),又称为冯氏着色(Phong shading)
逐像素着色Per-Pixel Lighting (冯氏着色Phong Shading)
将前文的古罗着色改为冯氏着色
//定义顶点着色的输出结构体/片段着色的输入结构体
//去掉颜色 添加顶点的世界坐标以及法向量,这里的语义使用了TEXCOORD的两个集合,这里的TEXCOORD是我们自己使用的,与顶点着色器输入时使用该语义 已经有区别了 struct vertexOutput {
float4 pos : SV_POSITION;
float4 posWorld : TEXCOORD0;
float3 normalDir : TEXCOORD1;
};
Shader "Custom/PhoneShadingSpecular" {
Properties {
_Color ("Diffuse Material Color", Color) = (1,1,1,1)
_SpecColor ("Specular Material Color", Color) = (1,1,1,1)
//材料表面的光泽程度,根据前文所述,此参数无穷大时,材料完全不会产生镜面反射
_Shininess ("Shininess", Float) = 10
}
SubShader {
Pass{
Tags { "LightMode" = "ForwardBase" } CGPROGRAM //定义顶点着色器与片段着色器入口
#pragma vertex vert
#pragma fragment frag
//获取property中定义的材料颜色
uniform float4 _Color;
uniform float4 _SpecColor;
uniform float _Shininess; // 光源的位置或者方向
//uniform float4 _WorldSpaceLightPos0; // 光源的颜色 (from "Lighting.cginc")
uniform float4 _LightColor0; //定义顶点着色器的输入参数结构体
//我们只需要每个顶点的位置与对应的法向量
struct vertexInput {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
//定义顶点着色的输出结构体/片段着色的输入结构体
//去掉颜色 添加顶点的世界坐标以及法向量 struct vertexOutput {
float4 pos : SV_POSITION;
float4 posWorld : TEXCOORD0;
float3 normalDir : TEXCOORD1;
}; //顶点着色器
vertexOutput vert (vertexInput input) {
vertexOutput output;
//对象坐标系到世界坐标系的变换矩阵
//_Object2World与_World2Object均为unity提供的内置uniform参数
float4x4 modelMatrix = _Object2World;
//世界坐标系到对象坐标系的变换矩阵
float4x4 modelMatrixInverse = _World2Object; //法向量N变化至对象坐标系
output.normalDir = normalize(float3(mul(float4(input.normal, 0.0), modelMatrixInverse))); //将顶点坐标向世界坐标系变换
output.posWorld=mul(modelMatrix,input.vertex); //国际惯例,顶点变化三步曲
output.pos = mul(UNITY_MATRIX_MVP, input.vertex); return output;
} //片段着色器,老规矩,把顶点着色器的输出参数作为片段着色器的输入参数
float4 frag(vertexOutput input): COLOR
{ //接受顶点着色器传递的法向量与顶点世界坐标
//这里必须将法向量再normalize一次
//尽管在顶点着色器中已经normalize了一次
float3 normalDirection=normalize(input.normalDir); float3 worldPosition=input.posWorld; //观察向量V由摄像机坐标与顶点坐标矢量相减
//这里改顶点坐标为上面获取到的世界坐标
float3 viewDirection = normalize(float3(float4(_WorldSpaceCameraPos, 1.0)
- worldPosition)); /*下面的部分直接招搬就好了*/ //平行光源的入射向量L直接由uniform_WorldSpaceLightPos0给出
float3 lightDirection =normalize(float3(_WorldSpaceLightPos0)); //镜面反射光的计算
float3 specularReflection=float3(_LightColor0)*float3(_SpecColor)*pow(max(0.0,dot(reflect(-lightDirection, normalDirection),viewDirection)),_Shininess); //前文计算好的漫反射光
float3 diffuseReflection=float3(_LightColor0) * float3(_Color)* max(0.0, dot(normalDirection, lightDirection)); //环境光直接获取
float3 ambientLighting = float3(UNITY_LIGHTMODEL_AMBIENT) * float3(_Color); //根据冯氏反射模型将上述3个RGB颜色向量相加,然后补充A: return float4(ambientLighting + diffuseReflection+ specularReflection, 1.0);; } ENDCG
}
}
FallBack "Diffuse"
}
最后的效果图,我们与上一个例子中的球体进行对比:


解读Unity中的CG编写Shader系列十 (光滑的镜面反射(冯氏着色))的更多相关文章
- 解读Unity中的CG编写Shader系列八(镜面反射)
转自http://www.itnose.net/detail/6117378.html 讨论完漫反射之后,接下来肯定就是镜面反射了 在开始镜面反射shader的coding之前,要扩充一下前面提到的知 ...
- [转]解读Unity中的CG编写Shader系列9——镜面反射
讨论完漫反射之后,接下来肯定就是镜面反射了在开始镜面反射shader的coding之前,要扩充一下前面提到的知识,加深理解镜面反射与漫反射的区别.注:这篇文章实现的镜面反射是逐顶点着色(per-ver ...
- [转]解读Unity中的CG编写Shader系列7——漫反射
如果前面几个系列文章的内容过于冗长缺乏趣味着实见谅,由于时间原因前面的混合部分还没有写完,等以后再补充,现在开始关于反射的内容了.折射与反射在物理世界中,光的反射与折射往往是同时存在的,光源由真空或者 ...
- 解读Unity中的CG编写Shader系列七(不透明度与混合)
转自http://www.itnose.net/detail/6098539.html 1.不透明度 当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段 ...
- 解读Unity中的CG编写Shader系列三
转自http://www.itnose.net/detail/6096068.html 在上一个例子中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上.这篇文章 ...
- [转]解读Unity中的CG编写Shader系列6——不透明度与混合
1.不透明度当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段着色器以及后面的环节的主要工作是输出颜色与深度到帧缓存中,所以两个纹理在每个像素上的颜色到 ...
- [转]解读Unity中的CG编写Shader系列3——表面剔除与剪裁模式
在上一个例子中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上.这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后面 ...
- 解读Unity中的CG编写Shader系列3——表面剔除与剪裁模式
在上一个样例中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上. 这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后 ...
- 解读Unity中的CG编写Shader系列四(unity中的圆角矩形shader)
转自 http://www.itnose.net/detail/6097625.html 上篇文章中我们掌握了表面剔除和剪裁模式 这篇文章将利用这些知识实现一个简单的,但是又很常用的例子:把一张图片做 ...
随机推荐
- vim ctags使用方法
一.用好系统自带软件ctags 大部分的unix系统都有ctags软件,它能跟vim很好地合作. 用途: 生成c语言的标签文件,实现相关c文件之间的跳转. 用法: 1.生成标签文件 ...
- 深入浅出的javascript的正则表达式学习教程
深入浅出的javascript的正则表达式学习教程 阅读目录 了解正则表达式的方法 了解正则中的普通字符 了解正则中的方括号[]的含义 理解javascript中的元字符 RegExp特殊字符中的需要 ...
- EF方便的添加一条信息...
//刚开始通过EF添加数据都是这样的...↓ var db = new DBEntities() T_User t_userinfo = new T_User() { Type = "typ ...
- 认识ATL窗口
这是一个相当于“Hello world!”的任务,作为认识ATL,考查了其运作流程与机制. 环境:VS2008 创建:新建-项目-Win32项目-添加公用头文件用于(选择ATL). PS:注意新建项目 ...
- 1.交通聚类:编辑距离 (Levenshtein距离)Java实现
1.最近工作中要实现用户车辆的行驶路线的聚类,由于所给的数据只有用户一天中交通卡口所监视的卡口名称 :即青岛路-威海路-济阳路 . 要通过聚类实现车辆路线的规律分析,首先要解决的是相似度问题,我们知道 ...
- javascript高级程序设计---NodeList和HTMLCollection
节点对象都是单个节点,但是有时会需要一种数据结构,能够容纳多个节点.DOM提供两种接口,用于部署这种节点的集合分别是NodeList和HTMLCollection MDN上的定义: NodeList: ...
- Dijkstra(歪果仁的名字真是长。。。)
Dijkstra算法又称为单源最短路径,所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题. 设G=(V,E)是一个有向图,V表示顶点,E表示边.它的每一条边 ...
- PYTHON 迭代器
可以走直接作用于for循环的对象统称为可迭代对象使用:Iterable 使用isinstance()判断一个对象是否是Iterable对象: from collections import Itera ...
- GR32 TImage32的图层绘制原理
转载:http://blog.sina.com.cn/s/blog_491aced20100ded4.html TImage32的继承顺序如下:TCustomControl->TCustomPa ...
- Android客户端的图形化拖放操作的设计实现
为什么要拖放?拖放在某些UI交互中可以简化用户操作. 拖放的步骤包括哪些?“Drag and Drop”,拖放,顾名思义,总共就分三步:1, 开始拖起来:2, 正在拖:3, 放下,进行操作:在这三步里 ...