给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数。

提示:

对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个。

Input
第1行:1个整数T(1<=T<=50000),表示有多少组测试数据。
第2 - T+1行:每行三个整数N,A,B(1<=N,A,B<=2147483647)
Output
对于每组测试数据输出一个数表示满足条件的集合的数量,占一行。
Input示例
2
5 2 4
10 2 3
Output示例
1
2   根据题意,设每一组为(x,y),并且 x = k1 * A , y = k2 * B;(k1,k2为正整数) ,并且x + y = n + 1;
得到不定方程k1*A + k2*B = n+1。 根据扩展欧几里德算法得到一组解,计算满足条件的有多少组即可。
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll __int64
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
ll A,B,n;
int gcd(int a,int b)
{
return b > ? gcd(b,a%b):a;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == ){
x = ;
y = ;
return a;
}
ll r = exgcd(b,a%b,x,y);
ll t = x;
x = y;
y = t - (a/b) * y;
return r;
}
ll getnum(ll x,ll k)
{
double l = -(x * 1.0)/k;
if(l <= ){
return (ll)l;
}
if(x % k){
return -x/k + ;
}
return x/k;
}
ll getnum1(ll n,ll B,ll y,ll k)
{
ll t = (y - n / B) / k;
if(B*(y - k * t) > n){
t ++;
}
return t;
}
int main()
{
int t;
ll ans, x, y;
cin >>t;
while(t--){ cin >>n >>A >>B;
ans = ;
int ret = exgcd(A,B,x,y);
if((n+) % ret != ){
ans = ;
}
else {
ll rt = (n+) / ret;
x *= rt;
y *= rt;
ll k1 = B / ret;
ll k2 = A / ret; //cout<<x<<' '<<y<<endl;
ll f,b;
ll c_x = getnum(x,k1);
ll c_y = getnum1(n,B,y,k2);
f = max(c_x,c_y);
ll fp1 = (n / A - x)/k1;
if(A*(x+k1*fp1) > n) fp1 --;
ll fp2 = y / k2;
b = min(fp2,fp1);
ans = (b - f + );
}
cout<<(ans > ? ans : )<<endl;
}
}


51nod 1352 扩展欧几里德的更多相关文章

  1. 51nod 1352:集合计数

    1352 集合计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2 ...

  2. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  3. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  4. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  5. CF 7C. Line(扩展欧几里德)

    题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...

  6. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  7. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  8. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  9. HDU 1576 A/B【扩展欧几里德】

    设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...

随机推荐

  1. AC日记——石头剪子布 openjudge 1.7 04

    04:石头剪子布 总时间限制:  1000ms 内存限制:  65536kB 描述 石头剪子布,是一种猜拳游戏.起源于中国,然后传到日本.朝鲜等地,随着亚欧贸易的不断发展它传到了欧洲,到了近现代逐渐风 ...

  2. git创建本地分支

    git branch -b newbranch //创建并切换到newbranch分支下 git push origin newbranch //推送到远程仓库的newbranch分支下,没有就创建

  3. JAZZ

    今天知道公司中的JAZZ是变形金刚中的“爵士”,如果写内部代码,就好像在操作“爵士”,还是蛮有意思的.先是接触了jQuery,然后是jQuery-ui,然后jazz,继续中...... JAZZ: 爵 ...

  4. Conherence Function

    来源: 部分来自wiki:https://en.wikipedia.org/wiki/Coherence_(signal_processing): 部分来自网络其它内容. The coherence  ...

  5. java多线程系类:基础篇:09之interrupt()和线程终止方式

    概要 本章,会对线程的interrupt()中断和终止方式进行介绍.涉及到的内容包括:1. interrupt()说明2. 终止线程的方式2.1 终止处于"阻塞状态"的线程2.2 ...

  6. DocOptimizer 0.9.0 Beta Released

    DocOptimizer 是一个文档优化工具,它通过移除Excel中多余的单元格:将嵌入的OLE替换成图片:移除文档中的隐藏信息:优化文档中的图片等等手段,将Office或PDF文件压缩20%-90% ...

  7. Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  8. Session一次错误记录

    /// <summary>        /// 验证登录状态是否已失效        /// </summary>        /// <returns>< ...

  9. 拒绝了对对象 'XXX' (数据库 'XXX',架构 'dbo')的 SELECT 权限

    2010-04-17 23:16 在IIS里测试ASP.NET网站时会遇到这样的问题(ASP.NET+SQL2005)我自己的解决方法是这样的: 1.打开SQL2005管理界面(没有安装SQLServ ...

  10. 如何禁止IE自动生成链接

    今天一位园友反馈,他用的是IE浏览器,在博客后台编辑器中输入下面的URL: http://www.windowsphone.com/zh-cn/store/app/博客园-uap/500f08f0-5 ...