Codeforces Round #343 (Div. 2)
居然补完了
组合 A - Far Relative’s Birthday Cake
import java.util.*;
import java.io.*; public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
int n = cin.nextInt ();
int[] col = new int[105];
String str;
long ans = 0;
for (int i=0; i<n; ++i) {
str = cin.next ();
int num = 0;
for (int j=0; j<str.length (); ++j) {
if (str.charAt (j) == 'C') {
col[j]++; num++;
}
}
ans += num * (num - 1) / 2;
}
for (int i=0; i<n; ++i) ans += col[i] * (col[i] - 1) / 2;
System.out.println (ans);
}
}
import java.util.*;
import java.io.*; public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
int n = cin.nextInt ();
String[] sex = new String[5005];
int[] btime = new int[5005];
int[] etime = new int[5005];
for (int i=0; i<n; ++i) {
sex[i] = cin.next ();
btime[i] = cin.nextInt ();
etime[i] = cin.nextInt ();
}
int ans = 0;
for (int i=1; i<=366; ++i) {
int male = 0, female = 0;
for (int j=0; j<n; ++j) {
if (i >= btime[j] && i <= etime[j]) {
if (sex[j].charAt (0) == 'M') male++;
else female++;
}
}
if (male < female) {
if (male * 2 > ans) ans = male * 2;
}
else {
if (female * 2 > ans) ans = female * 2;
}
}
System.out.println (ans);
}
}
DP C - Famil Door and Brackets
题意:n长的字符串有‘(’和‘)’组成,现在已知其中m长的字串,问满足任意前缀字串‘(’数量不小于‘)’数量且最后两者数量相等的原字符串的方案数。
分析:‘(’看作+1,‘(’看作-1。dp[i][j]表示前i个字符,和为j(j >= 0)的方案数,然后枚举m字符串前的字符个数p,那么m后q的个数也知道,根据总和为0可以得到前后组合,这里dp[n-m-i][j+now]用到对称思想。
import java.util.*;
import java.io.*; public class Main {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
Main ma = new Main ();
int n = cin.nextInt ();
int m = cin.nextInt ();
char[] str = cin.next ().toCharArray ();
long[][] dp = new long[2005][2005];
dp[0][0] = 1;
for (int i=1; i<=n-m; ++i) {
for (int j=0; j<=i; ++j) {
if (j > 0) {
dp[i][j] = ma.add (dp[i][j], dp[i-1][j-1]);
}
dp[i][j] = ma.add (dp[i][j], dp[i-1][j+1]);
}
}
int mn = 10000000;
int now = 0;
for (int i=0; i<m; ++i) {
if (str[i] == '(') now++;
else now--;
if (now < mn) mn = now;
}
long ans = 0;
for (int i=0; i<=n-m; ++i) {
for (int j=0; j<=i; ++j) {
if (j + mn >= 0 && j + now <= n - m - i) {
ans = ma.add (ans, dp[i][j] * dp[n-m-i][j+now] % MOD);
}
}
}
System.out.println (ans);
}
public long add(long a, long b) {
a += b;
if (a >= MOD) a -= MOD;
return a;
}
}
线段树+DP D - Babaei and Birthday Cake
题意:求最大上升序列和
分析:dp[i] 表示前i得到的最大上升序列和,dp[i] = dp[j] + vol[i] (vol[i] > vol[j])。用线段树优化动态统计前rk[i] - 1的最大值即dp[j],rk[i]是vol[i]离散化后的排名。
#include <bits/stdc++.h> #define lson l, mid, o << 1
#define rson mid + 1, r, o << 1 | 1
const double PI = acos (-1.0);
const int N = 1e5 + 5;
struct Segment_Tree {
double v[N<<2], mx[N<<2];
void push_up(int o) {
mx[o] = std::max (mx[o<<1], mx[o<<1|1]);
}
void build(int l, int r, int o) {
if (l == r) {
v[o] = mx[o] = 0;
return ;
}
int mid = l + r >> 1;
build (lson); build (rson);
push_up (o);
}
void updata(int p, double x, int l, int r, int o) {
if (l == r && l == p) {
v[o] = mx[o] = x;
return ;
}
int mid = l + r >> 1;
if (p <= mid) updata (p, x, lson);
else updata (p, x, rson);
push_up (o);
}
double query(int ql, int qr, int l, int r, int o) {
if (ql <= l && r <= qr) {
return mx[o];
}
int mid = l + r >> 1; double ret = 0;
if (ql <= mid) ret = std::max (ret, query (ql, qr, lson));
if (qr > mid) ret = std::max (ret, query (ql, qr, rson));
return ret;
}
};
double dp[N];
int r[N], h[N];
double vol[N], V[N]; int main(void) {
int n; scanf ("%d", &n);
for (int i=0; i<n; ++i) {
scanf ("%d%d", r + i, h + i);
vol[i] = PI * r[i] * r[i] * h[i];
V[i] = vol[i];
}
std::sort (V, V+n);
Segment_Tree st;
st.build (1, n, 1);
for (int i=0; i<n; ++i) {
int pos = std::lower_bound (V, V+n, vol[i]) - V + 1;
if (pos == 1) dp[i] = vol[i];
else dp[i] = st.query (1, pos - 1, 1, n, 1) + vol[i];
st.updata (pos, dp[i], 1, n, 1);
}
double ans = 0;
for (int i=0; i<n; ++i) {
if (ans < dp[i]) ans = dp[i];
}
printf ("%.10f\n", ans); return 0;
}
LCA + DP + DFS E - Famil Door and Roads
题意:加一条边,使形成简单环(无重边),u和v在其中的方案数
分析:加一条边一定是从u或v引出一条边到w而且w能到另一个点。无重边就是w不能选择u到v路径上的点。
dep[u]:根节点1到u的距离 sz[u]:u的子树包括u的结点数 sdown[u]:在u的子树下到u的距离和,树形dp
sall[u]:所有点到u的距离和,由sdown[u]得到,也是树形DP
一共有3种情况:1.LCA (u, v) == v,除v子树外所有点到v的距离和/点数 + u子树所有点到u的距离 / 点数
2.LCA (v, u) == u,同1
3.除1,2的情况,只能在u或v的子树选择一节点才能构成环,u子树所有点到u的距离 / 点数 + v子树所有点到v的距离 / 点数
最后还要加上不变的距离 dis (u, v) + 1。学习大牛的代码,获益匪浅
#include <bits/stdc++.h> const int N = 1e5 + 5;
const int D = 20;
std::vector<int> G[N];
int dep[N], sz[N];
long long sdown[N], sall[N];
int rt[N][D];
int n, m; void DFS(int u, int fa) { //get rt[v][0], sdown[u] and dep[v]
sdown[u] = 0; sz[u] = 1;
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (v == fa || dep[v] != 0) continue;
rt[v][0] = u;
dep[v] = dep[u] + 1;
DFS (v, u);
sdown[u] += sdown[v] + sz[v];
sz[u] += sz[v];
}
} void DFS2(int u, int fa) { //get sall[v]
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (v == fa) continue;
sall[v] = sall[u] + n - 2 * sz[v];
DFS2 (v, u);
}
} void init_LCA(void) {
for (int i=1; i<D; ++i) {
for (int j=1; j<=n; ++j) {
rt[j][i] = rt[j][i-1] == 0 ? 0 : rt[rt[j][i-1]][i-1];
}
}
} int up(int u, int d) {
for (int i=D-1; i>=0; --i) {
if (d < (1 << i)) continue;
u = rt[u][i]; d -= (1 << i);
}
return u;
} int LCA(int u, int v) {
if (dep[u] < dep[v]) std::swap (u, v);
for (int i=0; i<D; ++i) {
if ((dep[u] - dep[v]) >> i & 1) {
u = rt[u][i];
}
}
if (u == v) return u;
for (int i=D-1; i>=0; --i) {
if (rt[u][i] != rt[v][i]) {
u = rt[u][i];
v = rt[v][i];
}
}
return rt[u][0];
} int main(void) {
scanf ("%d%d", &n, &m);
for (int u, v, i=0; i<n-1; ++i) {
scanf ("%d%d", &u, &v);
G[u].push_back (v);
G[v].push_back (u);
}
dep[1] = 0;
DFS (1, 0);
sall[1] = sdown[1];
DFS2 (1, 0);
init_LCA ();
while (m--) {
int u, v; scanf ("%d%d", &u, &v);
int lca = LCA (u, v);
double ans = dep[u] + dep[v] - 2 * dep[lca] + 1;
if (lca == v || lca == u) {
if (lca == u) std::swap (u, v);
int v2 = up (u, dep[u] - dep[v] - 1);
long long supv = sall[v] - sdown[v2] - sz[v2];
ans += 1.0 * supv / (n - sz[v2]) + 1.0 * sdown[u] / sz[u];
}
else {
ans += 1.0 * sdown[u] / sz[u] + 1.0 * sdown[v] / sz[v];
}
printf ("%.12f\n", ans);
} return 0;
}
Codeforces Round #343 (Div. 2)的更多相关文章
- Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp
C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...
- Codeforces Round #343 (Div. 2) B. Far Relative’s Problem 暴力
B. Far Relative's Problem 题目连接: http://www.codeforces.com/contest/629/problem/B Description Famil Do ...
- Codeforces Round #343 (Div. 2) E. Famil Door and Roads
题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...
- Codeforces Round #343 (Div. 2) C. Famil Door and Brackets
题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...
- Codeforces Round #343 (Div. 2) B
B. Far Relative’s Problem time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp
E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- Codeforces Round #343 (Div. 2) A. Far Relative’s Birthday Cake 水题
A. Far Relative's Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/A Description Do ...
- Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP
题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...
随机推荐
- java课后作业7
9.页实验 下列语句哪一个将引起编译错误?为什么?哪一个会引起运行时错误?为什么? m=d; d=m; d=(Dog)m; d=c; c=(Cat)m; 答: d=m;和d=c;引起编译错误: 原因: ...
- 基于Spring的可扩展Schema进行开发自定义配置标签支持
一.背景 最近和朋友一起想开发一个类似alibaba dubbo的功能的工具,其中就用到了基于Spring的可扩展Schema进行开发自定义配置标签支持,通过上网查资料自己写了一个demo.今天在这里 ...
- Java中length,length(),size()区别
length属性:用于获取数组长度. eg: int ar[] = new int{1,2,3} /** * 数组用length属性取得长度 */ int lenAr = ar.length;//此处 ...
- 数据结构和算法 – 8.链表
8.1.数组存在的问题 在处理列表的时候数组是常用的数据结构.数组可以对所存储的数据项提供快速地存取访问,而且它很易于进行循环遍历操作.当然,数组已经是语言的一部分了,用户不需要使用额外的内存,也不需 ...
- (转)ORA-12519: TNS:no appropriate service handler found 的问题处理。
很多时候出现:ORA-12519: TNS:no appropriate service handler found 都是由于当前的连接数已经超出他能够处理的最大值了. 处理方法如下:摘自网上. se ...
- Delphi强制类型转化和类型约定
强制类型转换时一种技术,通过它能够使编译器把一种类型的变量当做另一种类型. 由于Pascal有定义新类型的功能,因此编译器在调用一个函数时候对形参和实参类型匹配的检查是非常严格的.因此为了能够通过编译 ...
- Delphi函数参数传递 默认参数(传值)、var(穿址)、out(输出)、const(常数)四类
Delphi的参数可以分为:默认参数(传值).var(传址).out(输出).const(常数)四类 可以对比C/C++的相关知识,类比学习. 1.默认参数是传值,不会被改变,例子 function ...
- MySql中delimiter的作用是什么?
这个命令与存储过程没什么关系吧.其实就是告诉mysql解释器,该段命令是否已经结束了,mysql是否可以执行了.默认情况下,delimiter是分号;.在命令行客户端中,如果有一行命令以分号结束,那么 ...
- OCJP(1Z0-851) 模拟题分析(八)over
Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...
- Jmeter在restful风格接口测试中的应用
1.如何下载安装 官网下载,一个压缩包apache-jmeter-3.0.zip,解压即可,打开bin目录下jmeter.bat即可打开软件. 2.熟悉界面 3.实际案例 测试restful风格接口 ...