居然补完了

组合 A - Far Relative’s Birthday Cake

import java.util.*;
import java.io.*; public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
int n = cin.nextInt ();
int[] col = new int[105];
String str;
long ans = 0;
for (int i=0; i<n; ++i) {
str = cin.next ();
int num = 0;
for (int j=0; j<str.length (); ++j) {
if (str.charAt (j) == 'C') {
col[j]++; num++;
}
}
ans += num * (num - 1) / 2;
}
for (int i=0; i<n; ++i) ans += col[i] * (col[i] - 1) / 2;
System.out.println (ans);
}
}

枚举 B - Far Relative’s Problem

import java.util.*;
import java.io.*; public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
int n = cin.nextInt ();
String[] sex = new String[5005];
int[] btime = new int[5005];
int[] etime = new int[5005];
for (int i=0; i<n; ++i) {
sex[i] = cin.next ();
btime[i] = cin.nextInt ();
etime[i] = cin.nextInt ();
}
int ans = 0;
for (int i=1; i<=366; ++i) {
int male = 0, female = 0;
for (int j=0; j<n; ++j) {
if (i >= btime[j] && i <= etime[j]) {
if (sex[j].charAt (0) == 'M') male++;
else female++;
}
}
if (male < female) {
if (male * 2 > ans) ans = male * 2;
}
else {
if (female * 2 > ans) ans = female * 2;
}
}
System.out.println (ans);
}
}

DP C - Famil Door and Brackets

题意:n长的字符串有‘(’和‘)’组成,现在已知其中m长的字串,问满足任意前缀字串‘(’数量不小于‘)’数量且最后两者数量相等的原字符串的方案数。

分析:‘(’看作+1,‘(’看作-1。dp[i][j]表示前i个字符,和为j(j >= 0)的方案数,然后枚举m字符串前的字符个数p,那么m后q的个数也知道,根据总和为0可以得到前后组合,这里dp[n-m-i][j+now]用到对称思想。

import java.util.*;
import java.io.*; public class Main {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner cin = new Scanner (new BufferedInputStream (System.in));
Main ma = new Main ();
int n = cin.nextInt ();
int m = cin.nextInt ();
char[] str = cin.next ().toCharArray ();
long[][] dp = new long[2005][2005];
dp[0][0] = 1;
for (int i=1; i<=n-m; ++i) {
for (int j=0; j<=i; ++j) {
if (j > 0) {
dp[i][j] = ma.add (dp[i][j], dp[i-1][j-1]);
}
dp[i][j] = ma.add (dp[i][j], dp[i-1][j+1]);
}
}
int mn = 10000000;
int now = 0;
for (int i=0; i<m; ++i) {
if (str[i] == '(') now++;
else now--;
if (now < mn) mn = now;
}
long ans = 0;
for (int i=0; i<=n-m; ++i) {
for (int j=0; j<=i; ++j) {
if (j + mn >= 0 && j + now <= n - m - i) {
ans = ma.add (ans, dp[i][j] * dp[n-m-i][j+now] % MOD);
}
}
}
System.out.println (ans);
}
public long add(long a, long b) {
a += b;
if (a >= MOD) a -= MOD;
return a;
}
}
线段树+DP D - Babaei and Birthday Cake
题意:求最大上升序列和
分析:dp[i] 表示前i得到的最大上升序列和,dp[i] = dp[j] + vol[i] (vol[i] > vol[j])。用线段树优化动态统计前rk[i] - 1的最大值即dp[j],rk[i]是vol[i]离散化后的排名。
#include <bits/stdc++.h>

#define lson l, mid, o << 1
#define rson mid + 1, r, o << 1 | 1
const double PI = acos (-1.0);
const int N = 1e5 + 5;
struct Segment_Tree {
double v[N<<2], mx[N<<2];
void push_up(int o) {
mx[o] = std::max (mx[o<<1], mx[o<<1|1]);
}
void build(int l, int r, int o) {
if (l == r) {
v[o] = mx[o] = 0;
return ;
}
int mid = l + r >> 1;
build (lson); build (rson);
push_up (o);
}
void updata(int p, double x, int l, int r, int o) {
if (l == r && l == p) {
v[o] = mx[o] = x;
return ;
}
int mid = l + r >> 1;
if (p <= mid) updata (p, x, lson);
else updata (p, x, rson);
push_up (o);
}
double query(int ql, int qr, int l, int r, int o) {
if (ql <= l && r <= qr) {
return mx[o];
}
int mid = l + r >> 1; double ret = 0;
if (ql <= mid) ret = std::max (ret, query (ql, qr, lson));
if (qr > mid) ret = std::max (ret, query (ql, qr, rson));
return ret;
}
};
double dp[N];
int r[N], h[N];
double vol[N], V[N]; int main(void) {
int n; scanf ("%d", &n);
for (int i=0; i<n; ++i) {
scanf ("%d%d", r + i, h + i);
vol[i] = PI * r[i] * r[i] * h[i];
V[i] = vol[i];
}
std::sort (V, V+n);
Segment_Tree st;
st.build (1, n, 1);
for (int i=0; i<n; ++i) {
int pos = std::lower_bound (V, V+n, vol[i]) - V + 1;
if (pos == 1) dp[i] = vol[i];
else dp[i] = st.query (1, pos - 1, 1, n, 1) + vol[i];
st.updata (pos, dp[i], 1, n, 1);
}
double ans = 0;
for (int i=0; i<n; ++i) {
if (ans < dp[i]) ans = dp[i];
}
printf ("%.10f\n", ans); return 0;
}

LCA + DP + DFS E - Famil Door and Roads

题意:加一条边,使形成简单环(无重边),u和v在其中的方案数

分析:加一条边一定是从u或v引出一条边到w而且w能到另一个点。无重边就是w不能选择u到v路径上的点。

  dep[u]:根节点1到u的距离   sz[u]:u的子树包括u的结点数  sdown[u]:在u的子树下到u的距离和,树形dp

  sall[u]:所有点到u的距离和,由sdown[u]得到,也是树形DP

  一共有3种情况:1.LCA (u, v) == v,除v子树外所有点到v的距离和/点数 + u子树所有点到u的距离 / 点数

          2.LCA (v, u) == u,同1

          3.除1,2的情况,只能在u或v的子树选择一节点才能构成环,u子树所有点到u的距离 / 点数 + v子树所有点到v的距离 / 点数

  最后还要加上不变的距离 dis (u, v) + 1。学习大牛的代码,获益匪浅

#include <bits/stdc++.h>

const int N = 1e5 + 5;
const int D = 20;
std::vector<int> G[N];
int dep[N], sz[N];
long long sdown[N], sall[N];
int rt[N][D];
int n, m; void DFS(int u, int fa) { //get rt[v][0], sdown[u] and dep[v]
sdown[u] = 0; sz[u] = 1;
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (v == fa || dep[v] != 0) continue;
rt[v][0] = u;
dep[v] = dep[u] + 1;
DFS (v, u);
sdown[u] += sdown[v] + sz[v];
sz[u] += sz[v];
}
} void DFS2(int u, int fa) { //get sall[v]
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (v == fa) continue;
sall[v] = sall[u] + n - 2 * sz[v];
DFS2 (v, u);
}
} void init_LCA(void) {
for (int i=1; i<D; ++i) {
for (int j=1; j<=n; ++j) {
rt[j][i] = rt[j][i-1] == 0 ? 0 : rt[rt[j][i-1]][i-1];
}
}
} int up(int u, int d) {
for (int i=D-1; i>=0; --i) {
if (d < (1 << i)) continue;
u = rt[u][i]; d -= (1 << i);
}
return u;
} int LCA(int u, int v) {
if (dep[u] < dep[v]) std::swap (u, v);
for (int i=0; i<D; ++i) {
if ((dep[u] - dep[v]) >> i & 1) {
u = rt[u][i];
}
}
if (u == v) return u;
for (int i=D-1; i>=0; --i) {
if (rt[u][i] != rt[v][i]) {
u = rt[u][i];
v = rt[v][i];
}
}
return rt[u][0];
} int main(void) {
scanf ("%d%d", &n, &m);
for (int u, v, i=0; i<n-1; ++i) {
scanf ("%d%d", &u, &v);
G[u].push_back (v);
G[v].push_back (u);
}
dep[1] = 0;
DFS (1, 0);
sall[1] = sdown[1];
DFS2 (1, 0);
init_LCA ();
while (m--) {
int u, v; scanf ("%d%d", &u, &v);
int lca = LCA (u, v);
double ans = dep[u] + dep[v] - 2 * dep[lca] + 1;
if (lca == v || lca == u) {
if (lca == u) std::swap (u, v);
int v2 = up (u, dep[u] - dep[v] - 1);
long long supv = sall[v] - sdown[v2] - sz[v2];
ans += 1.0 * supv / (n - sz[v2]) + 1.0 * sdown[u] / sz[u];
}
else {
ans += 1.0 * sdown[u] / sz[u] + 1.0 * sdown[v] / sz[v];
}
printf ("%.12f\n", ans);
} return 0;
}

  

Codeforces Round #343 (Div. 2)的更多相关文章

  1. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  2. Codeforces Round #343 (Div. 2) B. Far Relative’s Problem 暴力

    B. Far Relative's Problem 题目连接: http://www.codeforces.com/contest/629/problem/B Description Famil Do ...

  3. Codeforces Round #343 (Div. 2) E. Famil Door and Roads

    题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...

  4. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  5. Codeforces Round #343 (Div. 2) B

    B. Far Relative’s Problem time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  6. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  7. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  8. Codeforces Round #343 (Div. 2) A. Far Relative’s Birthday Cake 水题

    A. Far Relative's Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/A Description Do ...

  9. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

随机推荐

  1. Spring控制反转与依赖注入(IOC、DI)

    IOC: 反转控制   Inverse Of Control DI:依赖注入 Dependency Injection 目的:完成程序的解耦合 解释:在应用系统的开发过程中,有spring负责对象的创 ...

  2. 26. Remove Duplicates from Sorted Array

    题目: Given a sorted array, remove the duplicates in place such that each element appear only once and ...

  3. 模拟赛1101d2

    幸运数字(number)Time Limit:1000ms Memory Limit:64MB题目描述LYK 最近运气很差,例如在 NOIP 初赛中仅仅考了 90 分,刚刚卡进复赛,于是它决定使用一些 ...

  4. C#资源文件管理

    1.右键项目点属性; 2.点资源项,添加资源下拉框的添加现在文件,如下图: 3.直接上代码获取并复制到指定文件夹下: private void button1_Click(object sender, ...

  5. 多次快速点击相同button导致重复响应的问题

    Button在开发中经常用到,但是如果在瞬间点击多次时会出现多次响应事件的问题,今天给大家分享一下解决方法. 方法一:在Button响应事件中禁止Button允许点击, -(void)buttonAc ...

  6. JS获取阴历阳历和星期

    获取当前阳历日期时间,阴历日期和星期,三者分开,可自行调整顺序.  新建JS文件getdates.js,代码如下:/*获取当前阳历日期*/function getCurrentDateTime() { ...

  7. Javaweb---Servlet过滤器

    Servlet过滤器从字面上的字意理解为景观一层次的过滤处理才达到使用的要求,而其实Servlet过滤器就是服务器与客户端请求与响应的中间层组件,在实际项目开发中Servlet过滤器主要用于对浏览器的 ...

  8. 二、JavaScript语言--JS基础--JavaScript进阶篇--JavaScript内置对象

    1.什么事对象 JavaScript 中的所有事物都是对象,如:字符串.数值.数组.函数等,每个对象带有属性和方法. 对象的属性:反映该对象某些特定的性质的,如:字符串的长度.图像的长宽等: 对象的方 ...

  9. Powershell实例小结(服务管理)

    有关服务管理的具体实例脚本如下: #$lists="1.1.1.1","2.2.2.2" #远程ip列表 foreach ($list in $lists){ ...

  10. Android Attr -- Understanding Android Custom Attributes

    原文:http://androidbook.com/item/4169