Union-Find Algrithm is used to check whether two components are connected or not.

Examples:

By using the graph, we can easily find whether two components are connected or not, if there is no such graph, how do we know whether two components are connected or not?

Answer: For all connected components, we set their "root" to be the same.

So, we use an array to record the root of each component, if their roots are the same, return true, otherwise, return false.

Example:

So, how to implement it?

How is the time complexity of the operations?

So, Union operation is kind of expensive, can we decrease it?

Yes, instead of making all the components use the same root id, we can just set the parent id of root component in one set to the root id of another set. (Why we cannot just set the parent id of the root component in one set to the id of the connected component in another set???)

Example:

But the problem is when we check whether two components have the same root, the worst case time complexity is O(n). n refers to the size of the components, and this happens when we have a thin tree (all components are in the same tree, but this tree has no branches.)

Time complexity:

So, the approach above cannot decrease the union operation time complexity, rather, it increases the find operation time complexity.

If we have a closer look, we can find the reason why quick-union approach is not performing well is because the height of the tree could be very tall. So, the question becomes how to decrease the height of th tree?

There are two approaches:

First, when we marge two trees, the root of the smaller tree (with less # of components) will be connected to the root of larger tree.

The benefit of doing this can decrease the height of the tree.

Another approach is called path compression. The idea is every time when we get the root of a component, we always set its parent id to the root id.

Example:

So, this approach can also decrease the height of the tree.

Reference:https://www.cs.duke.edu/courses/cps100e/fall09/notes/UnionFind.pdf (普林斯顿的这位老爷爷讲得真的很清楚,youtube上可以收到他的视频。)

Union-Find Algorithm的更多相关文章

  1. [慢查优化]建索引时注意字段选择性 & 范围查询注意组合索引的字段顺序

    文章转自:http://www.cnblogs.com/zhengyun_ustc/p/slowquery2.html 写在前面的话: 之前曾说过"不要求每个人一定理解 联表查询(join/ ...

  2. [MySQL Reference Manual] 8 优化

    8.优化 8.优化 8.1 优化概述 8.2 优化SQL语句 8.2.1 优化SELECT语句 8.2.1.1 SELECT语句的速度 8.2.1.2 WHERE子句优化 8.2.1.3 Range优 ...

  3. 8.2.1.4 Index Merge Optimization 索引合并优化:

    8.2.1.4 Index Merge Optimization 索引合并优化: 索引合并方法是用于检索记录 使用多个 范围扫描和合并它们的结果集到一起 mysql> show index fr ...

  4. MySQL Index Merge Optimization

    Index Merge用在通过一些range scans得到检索数据行和合并成一个整体.合并可以通过 unions,intersections,或者unions-intersection运用在底层的扫 ...

  5. [Swift]LeetCode990. 等式方程的可满足性 | Satisfiability of Equality Equations

    Given an array equations of strings that represent relationships between variables, each string equa ...

  6. mysql 调优 来自5.6版本官方手册

    注意:下面示例中的key1和key2代表两个索引,key_part1和key_part2代表一个复合索引的第一列和第二列.non_key代表非索引列. 优化SQL语句 where语句优化: mysql ...

  7. Mysql优化(出自官方文档) - 第一篇(SQL优化系列)

    Mysql优化(出自官方文档) - 第一篇 目录 Mysql优化(出自官方文档) - 第一篇 1 WHERE Clause Optimization 2 Range Optimization Skip ...

  8. Algorithm partI 第2节课 Union−Find

    发展一个有效算法的具体(一般)过程: union-find用来解决dynamic connectivity,下面主要讲quick find和quick union及其应用和改进. 基本操作:find/ ...

  9. Geeks Union-Find Algorithm Union By Rank and Path Compression 图环算法

    相同是查找一个图是否有环的算法,可是这个算法非常牛逼,构造树的时候能够达到O(lgn)时间效率.n代表顶点数 原因是依据须要缩减了树的高度,也叫压缩路径(Path compression),名字非常高 ...

  10. Leetcode: Number of Islands II && Summary of Union Find

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

随机推荐

  1. Crontab的格式

    第1列分钟1-59第2列小时1-23(0表示子夜)第3列日1-31第4列月1-12第5列星期0-6(0表示星期天)第6列要运行的命令 下面是crontab的格式:分 时 日 月 星期 要运行的命令 这 ...

  2. Linux python <tab>自动补全

    为Python添加交互模式下TAB自动补全以及命令历史功能. 1.获取python目录 [root@localhost ~]# python Python 2.6.6 (r266:84292, Jul ...

  3. .NET安全审核检查表

    书籍名称:Web安全设计之道 -.NET代码安全,界面漏洞防范与程序优化   .NET安全审核检查表   检查项 任务描述 设计环节     Security descisions should no ...

  4. web.config中customErrors与httpErrors的区别

    打开IIS,我们发现会有两个处理错误页的地方,见下图: 进行不同的设置之后,我们发现设定结果会反应在web.config: .NET Error Pages设定被写入system.web/custom ...

  5. C# MVC EF中匿名类使用

    控制器中代码: var list = context.Says.Join( context.Users, a => a.UserId, b => b.Id, (a, b) => ne ...

  6. svn branch and merge(svn切换分支和合并)详解

    下文的实践主要是参考了TortoiseSVN的帮助文档和Subversion的在线文档,Subversion的在线文档:http://svnbook.red-bean.com/en/1.5/svn-b ...

  7. base64 加密

    Base64 参考网站:http://zh.wikipedia.org/wiki/Base64 简介 是网络上使用最广泛的编码系统,能够将任何二进制数据,转换成只有 65 个字符组成的文本文件 a~z ...

  8. cad中关于点样式点的绘制

    点样式 从0开始, 默认的就是0 0= 一个小点; 1= 空的, 什么都不显示; 2= +加号; 3= X 叉号 设置点样式的命令是: pdmode: 可以假设认为是: point default m ...

  9. thinkphp 项目分组 -开发随笔1

    php中变量的声明, 和变量的初始化 是结合在一起的, 要声明变量, 就是通过初始化变量来实现的. 感觉页面版式的布局, 还是: 先大致规划出布局, 如两栏 三栏, 一览的左右上下结合, 搭配. 然后 ...

  10. matlab 聚类

    目前已知matlab的聚类方法有三种: 一.利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法: 二.层次聚类,该方法较为灵活,需要进行细节了 ...