【poj1177】 Picture
http://poj.org/problem?id=1177 (题目链接)
题意
求矩形周长并。
Solution
转自:http://www.cnblogs.com/Booble/archive/2010/10/10/1847163.html
先看图:
为了解决这个问题 我们先把一坨一坨的矩形 进行矩形切割:
我们考虑周长由哪些部分构成
其中,红线是需要统计入周长的竖边,绿线是需要统计入周长的横边
我们称两条蓝线之间的部分为统计区间
我们需要依次统计从左到右的统计区间内的需要计数的矩形边,累加
形象地讲,就是用一根扫描线,从左到右依次扫描
具体实现就是依次遍历那些蓝线然后,累加每个区间的统计结果
我们任取2个统计区间进行详细讨论,放大前2个统计区间部分
考虑为什么同样是矩形边,红边需要统计而棕色的边不需要统计
我们发现深红色的边包含在第一个矩形内部,也就是夹在第一个矩形两条红边之间
继续分析,我们可以知道,横边也是这样
深蓝色边加在统计区间内的两条绿色边之间,属于矩形内部,不需要统计
那么,如何判定是否是红边或绿边呢?
我们在扫描线上投下当前经过扫描线矩形的投影
红边必然造成投影的变化,绿边必然在投影上线段的端点处
没有造成投影变化的竖边,肯定在投影内部,也就是在还未扫描完的矩形内部
不在投影线段段端点处的横边 也会夹在在投影线段端点处的两个矩形边内
于是,我们将绿边的长度=统计区间宽*投影连续段数*2
再与红边的长度=与上一个区间投影的差求和,即得到当前区间的统计值,再累加即可
考虑怎么统计答案,我们采用线段树:
先将一个矩形一分为二,分别记录下左竖边,右竖边,差分。将竖边按照左端点排序,扫描线从左到右扫描,依次将竖边所在的区间加入线段树,统计答案。
用线段树记录下扫描线上的投影的情况
当扫描线碰到举行左边的时候就插入这个线段,碰到矩形右边就删除这个线段(差分)
我们还要重新规划在线段树上的域:覆盖次数cov[],连续段数num[],长度len[](即被覆盖的总长度)
这几个域需要我们实时维护,更需增加维护的域ls[],rs[]表示左右端点是否被覆盖
于是问题至此就差不多解决了,注意我们线段树上记录的是区间而不是端点,这样更方便我们统计答案。
细节
左右下标。
代码
// poj1177
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=20010;
struct tree {int l,r,len,ls,rs,num,cov;}tr[maxn<<2];
struct data {int x,l,r,val;}a[maxn];
int n; void build(int k,int s,int t) {
tr[k].l=s;tr[k].r=t;
if (s==t) return;
int mid=(s+t)>>1;
build(k<<1,s,mid);
build(k<<1|1,mid+1,t);
}
void merge(int k) {
int l=tr[k].l,r=tr[k].r;
if (tr[k].cov) {
tr[k].ls=tr[k].rs=1;
tr[k].num=2;
tr[k].len=r-l+1;
}
else if (l==r) tr[k].ls=tr[k].rs=tr[k].len=tr[k].num=0;
else {
tr[k].num=tr[k<<1].num+tr[k<<1|1].num;
tr[k].len=tr[k<<1].len+tr[k<<1|1].len;
tr[k].ls=tr[k<<1].ls;tr[k].rs=tr[k<<1|1].rs;
if (tr[k<<1].rs && tr[k<<1|1].ls) tr[k].num-=2;
}
}
void update(int k,int s,int t,int val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (s<=l && t>=r) {tr[k].cov+=val;merge(k);return;}
if (s<=mid) update(k<<1,s,t,val);
if (t>mid) update(k<<1|1,s,t,val);
merge(k);
}
bool cmpx(data a,data b) {
return a.x<b.x;
}
int main() {
scanf("%d",&n);
int m=0,l=inf,r=-inf;
for (int x1,x2,y1,y2,i=1;i<=n;i++) {
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
l=min(l,y1);r=max(r,y2);
a[++m]=(data){x1,y1,y2,1};a[++m]=(data){x2,y1,y2,-1};
}
n=m;
build(1,l,r-1);
sort(a+1,a+1+n,cmpx);
int ans=0;
for (int i=1;i<=n;i++) {
int tmp=tr[1].len;
if (i!=1) ans+=tr[1].num*(a[i].x-a[i-1].x);
update(1,a[i].l,a[i].r-1,a[i].val);
ans+=abs(tr[1].len-tmp);
}
printf("%d",ans);
return 0;
}
【poj1177】 Picture的更多相关文章
- 【HDOJ1828&&POJ1177】Picture(线段树,扫描线)
题意:给定n个矩形,求他们的并的周长 n<=5e3,abs(x[i])<=1e4 思路:From https://www.cnblogs.com/kuangbin/archive/2013 ...
- 【MFC】picture控件 两种有细微差别的动态加载图片方法
摘自:http://www.jizhuomi.com/software/193.html VS2010/MFC编程入门之二十七(常用控件:图片控件Picture Control) 分类标签: 编程入门 ...
- 【IOI1998】Picture(扫描线+线段树)
问题来源:IOI1998 D2T1 题意:就是在一个平面内给出n个矩形,叫你计算将这些矩形合并以后,新图形的周长. 例如: 上图是原本的矩形们 ---------->合并后的图形 解题思路:拿一 ...
- 【HDU 1828】 Picture (矩阵周长并,线段树,扫描法)
[题目] Picture Problem Description A number of rectangular posters, photographs and other pictures of ...
- 【题解】POJ2279 Mr.Young′s Picture Permutations dp
[题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...
- 【IOI 1998】 Picture
[题目链接] 点击打开链接 [算法] 线段树扫描线求周长并 [代码] #include <algorithm> #include <bitset> #include <c ...
- 【49.23%】【hdu 1828】Picture
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...
- 【转】ACM训练计划
[转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...
- 【HOW】如何配置SharePoint传入/传出电子邮件设置
SharePoint 2010的传入和传出邮件配置选项都较简单,但由于需要DNS及Exchange等服务器互相配合,所以要正确配置并不容易. 在微软的官方文档中详细说明了配置步骤:配置传入电子邮件:h ...
随机推荐
- SQL80001: Incorrect syntax near ':'
原文连接:http://geekswithblogs.net/tonyt/archive/2010/03/05/138363.aspx SQL80001: Incorrect syntax nea ...
- VFS分析(二)基本数据结构(持续更新)
nameidata /mnt/dir1/dir2/ nameidata结构体是一个临时的结构体, 目标是为了找到最后的dentry.
- 产品经理技能之MRD的笔记之一
原文:http://www.woshipm.com/pmd/131946.html/comment-page-1 产品经理技能之MRD 一.MRD与BRD的不同之处 BRD:这么做有什么好处,并说明好 ...
- Android 编译命令 make j8 2>&1 | tee build.log 解释
在编译Android的时候,经常看到这样的命令 make -j8 2>&1 | tee build.log 其中 make 是编译命令, -j8 这里的 8 指的是线程数量,就是你要 ...
- 清北学堂2017NOIP冬令营入学测试P4749 F’s problem(f)
时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 这个故事是关于小F的,它有一个怎么样的故事呢. 小F是一个田径爱好者,这天它们城市里正在 ...
- Python之线程、进程和协程
python之线程.进程和协程 目录: 引言 一.线程 1.1 普通的多线程 1.2 自定义线程类 1.3 线程锁 1.3.1 未使用锁 1.3.2 普通锁Lock和RLock 1.3.3 信号量(S ...
- Block Chain, a protocol view
我做了个区块链的文档,给自己扫盲用的,有兴趣的可以看下,主要是自己画示意图比较好理解,示意图之后的专题部分,内容直接取自参考链接.网上的资料都是谈区块链有什么性质.有什么能力.有什么应用之类的,我主要 ...
- CoreBluetooth——IOS蓝牙4.0使用心得
原文链接:http://m.blog.csdn.net/article/details?plg_nld=1&id=51014318&plg_auth=1&plg_uin=1&a ...
- PAT 1067. Sort with Swap(0,*)
1067. Sort with Swap(0,*) (25) Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy ...
- HTML5 — 让拖放变的流行起来
先上 Demo,尽量用 chrome,代码可参考 Github. 在 HTML5 出现之前,页面元素的拖放需要监听 mousedown.mouseover 以及 mouseup 等一系列事件,然后改变 ...