原文链接https://www.cnblogs.com/zhouzhendong/p/CF1045D.html

题目传送门 - CF1045D

题意

  给定一棵有 $n$ 个节点的树,第 $i$ 个节点有 $p_i$ 的概率消失。有 $q$ 次操作,每次操作修改一个节点消失的概率,请你在每一次操作之后输出树的期望连通块个数。

  $n,q\leq 10^5$

题解

  首先我们考虑如何求解不操作的情况。

  考虑期望的线性性,我们统计每一个节点对答案的贡献。

  首先,假装每一个节点都是一个连通块。

  对于节点 x ,如果他消失了,那么连通块个数 -1,由于他消失的概率是 $p_x$ ,他对期望的贡献为 $p_i$ 。

  对于无序数对 $(x,y)$ ,如果 x 和 y 有边连接,那么,当且仅当他们都存在,才会对连通块个数产生贡献,所以它对期望的贡献为 $(1-p_x)(1-p_y)$ 。

  完成了这个问题之后,修改操作也变得简单了。

  首先给树定根。然后,只需要对于每一个节点 x 维护一个 vson[x] 代表其所有儿子的 $(1-p_y)$ 之和。修改操作就变的简单了。

  时间复杂度 $O(n)$ 。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=100005;
int n,Q,fa[N];
double v[N],vson[N],ans;
vector <int> e[N];
void solve(int x,int pre){
ans-=1.0-v[x];
fa[x]=pre,vson[x]=0;
for (auto y : e[x])
if (y!=pre){
ans-=v[x]*v[y];
vson[x]+=v[y];
solve(y,x);
}
}
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
e[i].clear();
v[0]=0;
for (int i=1;i<=n;i++)
scanf("%lf",&v[i]),v[i]=1.0-v[i];
for (int i=1,a,b;i<n;i++){
scanf("%d%d",&a,&b),a++,b++;
e[a].push_back(b);
e[b].push_back(a);
}
ans=n;
solve(1,0);
scanf("%d",&Q);
while (Q--){
int x;
double y;
scanf("%d%lf",&x,&y),x++;
ans+=v[fa[x]]*vson[fa[x]]+v[x]*vson[x]+1.0-v[x];
vson[fa[x]]-=v[x];
v[x]=1.0-y;
vson[fa[x]]+=v[x];
ans-=v[fa[x]]*vson[fa[x]]+v[x]*vson[x]+1.0-v[x];
printf("%.6lf\n",ans);
}
return 0;
}

  

Codeforces 1045D Interstellar battle 概率期望的更多相关文章

  1. 2018.09.27 codeforces1045D. Interstellar battle(期望dp)

    传送门 一道有意思的期望dp. 题意是给出一棵树,每个点最开始都有一个gg的概率,有m次修改,每次修改会把某个点gg的概率更换掉,让你求出每次修改之后整个树被分成的连通块的数量的期望(gg掉的点不算) ...

  2. Codeforces 912D Fishes (概率&期望,优先队列的应用)

    题目链接 Fishes 题意  在一个$n*m$的矩阵中,随机选择一个$r * r$的区域覆盖. 一开始我们可以在这个$n*m$的矩阵中选择$k$个点标记为$1$. 我们要选择一个最佳的标记策略,使得 ...

  3. Codeforces 912D Fishs ( 贪心 && 概率期望 && 优先队列 )

    题意 : 给出一个 N * M 的网格,然后给你 K 条鱼给你放置,现有规格为 r * r 的渔网,问你如果渔网随意放置去捕捞小鱼的情况下,捕到的最大期望值是多少? 分析 :  有一个很直观的想法就是 ...

  4. codeforces 1045 D. Interstellar battle

    题目大意:一颗树,给定每个点消失的概率,求出连通块的期望值.要求支持修改消失概率的操作并且给出每次修改过后的期望值.注意被破坏的点不能算入连通块中. 数据范围,时限1S. 传送门 D. Interst ...

  5. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  6. CodeForces - 28C Bath Queue 概率与期望

    我概率期望真是垃圾--,这题搞了两个钟头-- 题意 有\(n\)个人,\(m\)个浴室,每个浴室里有\(a_i\)个浴缸.每个人会等概率随机选择一个浴室,然后每个浴室中尽量平分到每个浴缸.问期望最长排 ...

  7. [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)

    [Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...

  8. [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)

    [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...

  9. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

随机推荐

  1. Golang 优化之路-空结构[转]

    写在前面 开发 hashset 常用的套路: map[int]int8 map[int]bool 我们一般只用 map 的键来保存数据,值是没有用的.所以来缓存集合数据会造成内存浪费. 空对象 空对象 ...

  2. 解决:angularjs radio默认选中失效问题

    添加ng-model后checked="checked"失效,可见angularjs也不好,会失效html标准属性   解决:添加ng-checked="1" ...

  3. Confluence 6 查看内容索引概要

    内容索引,通常也被称为查找索引,这个索引被用来在 Confluence 中支持查找.这个索引同时也被其他的一些功能使用,例如在归档邮件中构建邮件主题,View Space Activity 的特性和将 ...

  4. 【VBA】数组定义时,括号内的数值n为最大下标,其长度为n+1

    定义数组 dim arr(9) as integer注意这是数组的长度为10,而9指的是最大下标值. 所以在redim和赋值的时候要特别小心,防止错位.

  5. nginx官方模块之http_sub_module

    作用 http内容替换 语法 示例 html代码与结果如下:

  6. jquery----jquery中的属性的利用

    1.javascript addClass 利用document.getElementById("XX")找到document对象.然后再通过addClass("xxx& ...

  7. sass编写高质量的css---(基础语法结构)

    一:基础1.Sass:最早也是最成熟的CSS预处理语言2.Less:兼容CSS的最流行的css预处理语言3.Stylus:主要用于node.js社区 二:scss写法1)混入@mixin alert( ...

  8. java使用POI解析2007以上的Excel表格

    来自http://hao0610.iteye.com/blog/1160678 使用poi来解析Excel的xls和xlsx. 解析xls: package xls; import java.io.F ...

  9. 蓝桥杯  历届试题 幸运数  dfs

    历届试题 幸运数 时间限制:1.0s   内存限制:256.0MB 问题描述 幸运数是波兰数学家乌拉姆命名的.它采用与生成素数类似的"筛法"生成 . 首先从1开始写出自然数1,2, ...

  10. Django认证系统auth认证

    使用Django认证系统auth认证 auth认证系统可以处理范围非常广泛的任务,且具有一套细致的密码和权限实现.对于需要与默认配置不同需求的项目,Django支持扩展和自定义认证;会将用户信息写入到 ...