BZOJ2480 Spoj3105 Mod 数论 扩展BSGS
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2480.html
题目传送门 - BZOJ2480
题意
已知数 $a,p,b$ ,求满足 $a^x≡b \pmod p $ 的最小自然数 $x$ 。
$a,p,b\leq 10^9$
题解
ExBSGS模板题。
UPD(2018-09-10):
详见数论总结。
传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html
代码
#include <bits/stdc++.h>
using namespace std;
int a,p,b;
int Pow(int x,int y,int mod){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int gcd(int x,int y){
return y?gcd(y,x%y):x;
}
struct hash_map{
static const int Ti=233,mod=1<<16;
int cnt,k[mod+1],v[mod+1],nxt[mod+1],fst[mod+1];
int Hash(int x){
int v=x&(mod-1);
return v==0?mod:v;
}
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void update(int x,int a){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x){
v[p]=a;
return;
}
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt,v[cnt]=a;
return;
}
int find(int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
return 0;
}
int &operator [] (int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt;
return v[cnt]=0;
}
}Map;
int ExBSGS(int A,int B,int P){
A%=P,B%=P;
int k=0,v=1;
while (1){
int g=gcd(A,P);
if (g==1)
break;
if (B%g)
return -1;
k++,B/=g,P/=g,v=1LL*v*(A/g)%P;
if (v==B)
return k;
}
if (P==1)
return k;
int M=max((int)sqrt(1.0*P),1),AM=Pow(A,M,P);
Map.clear();
for (int b=0,pw=B;b<M;b+=1,pw=1LL*pw*A%P)
Map.update(pw,b+1);
for (int a=M,pw=1LL*v*AM%P;a-M<P;a+=M,pw=1LL*pw*AM%P){
int v=Map.find(pw);
if (v)
return a-(v-1)+k;
}
return -1;
}
int main(){
while (~scanf("%d%d%d",&a,&p,&b)&&(a||b||p)){
int ans=ExBSGS(a,b,p);
if (~ans)
printf("%d\n",ans);
else
puts("No Solution");
}
return 0;
}
BZOJ2480 Spoj3105 Mod 数论 扩展BSGS的更多相关文章
- BZOJ2480 Spoj3105 Mod
乍一看题面:$$a^x \equiv b \ (mod \ m)$$ 是一道BSGS,但是很可惜$m$不是质数,而且$(m, a) \not= 1$,这个叫扩展BSGS[额...... 于是我们需要通 ...
- BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...
- Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)
哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...
- 【bzoj2480】Spoj3105 Mod
2480: Spoj3105 Mod Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 557 Solved: 210[Submit][Status][ ...
- BSGS及扩展BSGS总结(BSGS,map)
蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbo ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- 【模板】exBSGS/Spoj3105 Mod
[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件 ...
- bzoj 3283 扩展BSGS + 快速阶乘
T2 扩展BSGS T3 快速阶乘 给定整数n,质数p和正整数c,求整数s和b,满足n! / pb = s mod pc 考虑每次取出floor(n/p)个p因子,然后将问题转化为子问题. /*** ...
- BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...
随机推荐
- CF 189A Cut Ribbon
#include<bits/stdc++.h> using namespace std; const int maxn = 4000 + 131; int n, a, b, c; int ...
- Laravel 怎么使用资源控制器delete方法
### 在视图上,想删除某个数据,而控制器是使用了resources controller的 那么在删除数据的时候,还是有些需要注意的地方 ### 视图上: <a href="java ...
- Spring Cloud构建微服务架构(五)服务网关
通过之前几篇Spring Cloud中几个核心组件的介绍,我们已经可以构建一个简略的(不够完善)微服务架构了.比如下图所示: 我们使用Spring Cloud Netflix中的Eureka实现了服务 ...
- JS将图片转换成Base64码
直接上代码 html页面代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...
- 38)django-组合搜索
一:组合搜索 组合搜索可以用来实现快速查询.效果图举例.瓜子网站选车 注意:URL中的地址0-0什么的是传递的参数的值. 二:实现组合搜索 组合实现条件 1)有外键或者多对多多关系 2)有choice ...
- Oracle的AES加密与解密用法
Oracle的AES加密与解密用法2013年12月11日 11:50:35 iteye_751 阅读数:428--加密字符串create or replace function des3_enc( i ...
- 反转链表算法Java实现
之前遇到反转链表的算法,比较晦涩难解,但其实挺简单的. 目标:将一个顺序链表反转. 思路:用三个辅助节点,每次实现一个节点的指向反转,即他的后继变为他的前驱. 三个辅助节点: p q r 按顺序 ...
- Modbus库开发笔记:Modbus ASCII Master开发
这一节我们来封装Modbus ASCII Master应用,Modbus ASCII主站的开发与RTU主站的开发是一致的.同样的我们也不是做具体的应用,而是实现ASCII主站的基本功能.我们将ASCI ...
- setenforce: SELinux is disabled解决办法
如果在使用setenforce命令设置selinux状态的时候出现这个提示:setenforce: SELinux is disabled 那么说明selinux已经被彻底的关闭了 如果需要重新开启s ...
- 断路器Ribbon
断路器:就是对服务访问不到的情况做出自己的错误,也就是故障转移(将当前出现故障的请求重新返回特定消息) 改造消费者项目(RibbonDemo) 1.在pom.xml中引入hystrix的jar包 &l ...