题目描述

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,…,L0,1,…,L(其中LL是桥的长度)。坐标为00的点表示桥的起点,坐标为LL的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是SS到TT之间的任意正整数(包括S,TS,T)。当青蛙跳到或跳过坐标为LL的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度LL,青蛙跳跃的距离范围S,TS,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

输入输出格式

输入格式:

第一行有11个正整数L(1 \le L \le 10^9)L(1≤L≤109),表示独木桥的长度。

第二行有33个正整数S,T,MS,T,M,分别表示青蛙一次跳跃的最小距离,最大距离及桥上石子的个数,其中1 \le S \le T \le 101≤S≤T≤10,1 \le M \le 1001≤M≤100。

第三行有MM个不同的正整数分别表示这MM个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

输出格式:

一个整数,表示青蛙过河最少需要踩到的石子数。

输入输出样例

输入样例#1: 复制

10
2 3 5
2 3 5 6 7
输出样例#1: 复制

2

说明

对于30%的数据,L \le 10000L≤10000;

对于全部的数据,L \le 10^9L≤109。

2005提高组第二题

数据有九位  普通dp很容易想到 但肯定只能拿30

一个坑点是   可以跳过终点要注意   (多dp几步即可)

#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define inf 0x3f3f3f3f
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
int a[];
int dp[]; int main()
{
int d;
RI(d);
int s,e,n;
RIII(s,e,n);
rep(i,,n)
{
int x;
RI(x);
a[x]=;
}
rep(i,,d+)
dp[i]=inf;
dp[]=;
int ans=inf;
rep(i,,d+)
{
if(i-e>d)break;
rep(j,i-e,i-s)
if(j>=)
dp[i]=min(dp[i],dp[j]); if(a[i])
dp[i]++;
if(i>=d)
ans=min(ans,dp[i]);
}
cout<<ans;
}

P1052 过河 线性dp的更多相关文章

  1. P1052 过河 线性dp 路径压缩

    题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数 ...

  2. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  3. P1052 过河(离散化+dp)

    P1052 过河 dp不难,重点是要想到离散化. 石子个数$<=100$意味着有大量空间空置,我们可以缩掉这些空间. 实现的话自己yy下就差不多了. #include<iostream&g ...

  4. 洛谷p1052过河 路径压缩+dp

    洛谷 P1052 过河 思路部分可以看这篇博客 我将在这里对其进行一些解释与补充 首先我们先看题 乍一看 这不是模板题吗 然后开开心心的敲了一个简单dp上去 #include<iostream& ...

  5. 线性dp

    线性dp应该是dp中比较简单的一类,不过也有难的.(矩乘优化递推请出门右转) 线性dp一般是用前面的状态去推后面的,也有用后面往前面推的,这时候把循环顺序倒一倒就行了.如果有的题又要从前往后推又要从后 ...

  6. P1052 过河(状态压缩)

    P1052 过河(状态压缩) 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把 ...

  7. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  8. 洛谷P1052 过河

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上. 由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青 ...

  9. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

随机推荐

  1. 借助dubbo-admin来管理你的服务

      1.  Github上下载最新的dubbo源码包并解压   2. 修改配置信息(打开 dubbo-admin/src/main/webapp/WEB-INF下的dubbo.properties,修 ...

  2. linux软件安装、rpm操作命令、本地yum配置(有什么用)

    1.yum是什么? yum的全称是yellow dog updater,modified,是一个shell前端软件包管理器;基于RPM包管理,能够从指定的服务器下载RPM包并自动安装,可以自动处理依赖 ...

  3. (转)浅谈Hybrid技术的设计与实现

    转载地址:https://www.cnblogs.com/yexiaochai/p/4921635.html 前言 浅谈Hybrid技术的设计与实现 浅谈Hybrid技术的设计与实现第二弹 浅谈Hyb ...

  4. hash·余数hash和一致性hash

    网站的伸缩性架构中,分布式的设计是现在的基本应用. 在memcached的分布式架构中,key-value缓存的命中通常采用分布式的算法 一.余数Hash     简单的路由算法可以使用余数Hash: ...

  5. 对mysql数据库中字段为空的处理

    数据库中字段为空的有两种:一种为null,另一种为空字符串.null代表数值未知,空字符串是有值得,只是为空.有时间我们想把数据库中的数据以excel形式导出时 如果碰到字段为空的,为空的字段会被后面 ...

  6. 用sqlplus为oracle创建用户和表空间

    用Oracle自带的企业管理器或PL/SQL图形化的方法创建表空间和用户以及分配权限是相对比较简单的, 本文要介绍的是另一种方法就是使用Oracle所带的命令行工具SQLPLUS来创建表空间. 打开S ...

  7. Confluence 6 数据库表-授权(Authentication)

    下面的表格对用户授权有关的信息进行存储,这部分是通过嵌入到 Confluence 中的  Atlassian Crowd 框架实现的. cwd_user Confluence 中每一个用户的信息. c ...

  8. vue的基础知识

    Vue.js是什么? Vue(法语)同view(英语) Vue.js是一套构建用户界面(view)的MVVM框架.Vue.js的核心库只关注视图层,并且非常容易学习,非常容易与其他库或已有的项目整合. ...

  9. 两种lca的求法:树上倍增,tarjan

    第一种:树上倍增 f[x,k]表示x的2^k辈祖先,即x向根结点走2^k步达到的结点. 初始条件:f[x][0]=fa[x] 递推式:f[x][k]=f[ f[x][k-1] ][k-1] 一次bfs ...

  10. cut sticks

    问题 : cut sticks 时间限制: 1 Sec  内存限制: 128 MB 题目描述 George took sticks of the same length and cut them ra ...