HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列
题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$。给定$a,b,n$,求$F[n]$。
题解:暴力打表后发现$ F[n]=a^{fib(n-1)} * b^{fib(n)} $
斐波那契数列可用矩阵快速幂求解。但是此题中n较大,fib会爆掉。这时候需要引入费马小定理优化。
证明:$a^x \% p = a^{x \%(p-1)} \%p$
1. $a^x \% p = a^{x \% (p-1) + x/(p-1)*(p-1)} \% p$
2. $a^x \% p = a^{x \% (p-1)} * a^{x/(p-1)*(p-1)} \%p$
3. $a^{x/(p-1)*(p-1)} \% p= ({a^{p-1}}) ^ {(x/(p-1))} \%p = 1^ {(x/(p-1))}$
把3式带入2式,即可证明。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2
using namespace std; typedef long long ll;
const ll mod=; struct mat
{
ll m[N][N]=
{
{,},
{,}
};
}; mat mul(mat a,mat b,ll p)
{
mat ans;
int i,j,k;
for(i=;i<N;i++)
for(j=;j<N;j++)
ans.m[i][j]=; for(i=;i<N;i++)
for(j=;j<N;j++)
for(k=;k<N;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%p;
return ans;
} ll matpow(ll n,ll p)
{
if(n<) return ;
mat ans,tmp;
int i,j;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
ans.m[i][j]=; ans.m[][]=;
ans.m[][]=;
while(n)
{
if(n&) ans=mul(tmp,ans,p);
tmp=mul(tmp,tmp,p);
n=n>>;
}
return ans.m[][]%p;
} ll fast_mod(ll a,ll b,ll p){
ll res=;
while(b){
if(b&) res=(res*a)%p;
a=(a*a)%p;
b>>=;
}
return res;
} int main(){
ll n,a,b; while(scanf("%lld%lld%lld",&a,&b,&n)!=EOF){
if(n==){
printf("%lld\n",a);
continue;
}
else if(n==){
printf("%lld\n",b);
continue;
}
else if(a==||b==){
printf("0\n");
continue;
}
ll m1=matpow(n-,mod-);
ll m2=matpow(n,mod-);
ll ans=(fast_mod(a,m1,mod)*fast_mod(b,m2,mod))%mod;
printf("%lld\n",ans%mod);
} return ;
}
HDU 4549 M斐波那契数列(矩阵快速幂)的更多相关文章
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- 关于PHP批量图片格式转换的问题--本文转成webp, 其他过程格式一样
最近要把项目中的图片全部生成webp格式, 过程整理一下, (直接存在本地,或者图片链接存在数据库都可以看看) 首先,肯定是批量处理, 一个php处理不了这么多, 会爆内存的, 个人建议用aja ...
- C++类的内存结构
摘自Jerry19880126 简单类 class Base { int a; int b; public: void CommonFunction(); }; 简单类继承 class Derived ...
- ResultHandler的用法
ResultHandler,顾名思义,对返回的结果进行处理,最终得到自己想要的数据格式或类型.也就是说,可以自定义返回类型.下面通过一个例子讲解它的使用方法: 创建Goods实体类: public c ...
- Vue 获得所选中目标的状态(checked)以及对应目标的数据,并进行相应的操作
一.我们现在要拿取购物车中选中商品的状态和该商品的所有数据或者id <ul v-if="shopList.list.length>0"> <li class ...
- 国内的go get问题的解决
在国内采用go get有时会下载不到一些网站如golang.org的依赖包. 方法1(亲测有效): gopm 代替go 下载第三方依赖包可以采用gopm从golang.org一些镜像网站上下载. 注意 ...
- 读懂掌握 Python logging 模块源码 (附带一些 example)
搜了一下自己的 Blog 一直缺乏一篇 Python logging 模块的深度使用的文章.其实这个模块非常常用,也有非常多的滥用.所以看看源码来详细记录一篇属于 logging 模块的文章. 整个 ...
- delphi中如何实现DBGrid中的两列数据想减并存入另一列
可参考下面的例子: 数据自动计算的实现:“金额”是由“单价”和“工程量”相乘直接得来的,勿需人工输入. 这可在“数据源构件”的onupdatedata例程添加如下代码实现: procedure T ...
- hibernate一对多映射文件的配置
其中一个Customer对应多个LinkMan Customer的映射文件 Customer.hbm.xml-------------->一对多 <?xml version="1 ...
- Mysql(Mariadb)数据库主从复制
Mysql主从复制的实现原理图大致如下: MySQL之间数据复制的基础是以二进制日志文件(binary log file)来实现的,一台MySQL数据库一旦启用二进制日志后,其作为master,它数据 ...
- Facebook开源最先进的语音系统wav2letter++
最近,Facebook AI Research(FAIR)宣布了第一个全收敛语音识别工具包wav2letter++.该系统基于完全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的两倍 ...