题目链接:http://poj.org/problem?id=2356

题目大意:给你n个数,要你从n个数选出若干个数,要求这若干个数的和是n的倍数,输出选择数的个数,以及相应的数。

解题思路:

以下摘自博客:https://www.cnblogs.com/pengwill/p/7367031.html

二、鸽巢原理(抽屉原理)

基本描述

桌子上有是个苹果,把这十个苹果放到九个抽屉里,无论怎么放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是所说的“抽屉原理”。
更一般的表述:如果每一个抽屉代表一个集合,每一个苹果就可以代表一个元素。加入有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。

第一抽屉原理

原理1

把多余n+1个物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

原理2

把多余mn+1(n不为0)个物体放到n个抽屉里面,则至少有一个抽屉里面不少于(m+1)的物体。

第二抽屉原理

把(mn -1 )个物体放入n个抽屉中,其中必须有一个抽屉不多余(m-1)个物体。
如将3*5-1 = 14个物体放入5个抽屉中,则必定有一个抽屉中的物体数目少于3-1=2.

举例

属相问题

属相有12个,那么任意37个人中,至少有几个人属相相同?

上取整(37 / 12) = 4

招聘问题

有300人到招聘会求职,其中软件设计有100人,市场营销有80人,财务管理有70人,人力资源管理有50人。那么至少有多少人找到工作才能保证一定有70人找的工作专业相同?

考虑最差情况,即软件设计,市场营销,财务管理均招了69人,人力资源管理招了50人,此时再多招1人,就有70人找的工作专业相同了。
故答案为 69*3 + 50 + 1 = 258

衬衫问题

一个抽屉里有20件衬衫,其中4件是蓝的,7件是灰的,9件是红的,则应从中随意取出多少件才能保证有5件是同颜色的?

考虑最差情况,即已经取出了4件蓝色,4件灰色,4件红色,再多取出1件就满足条件。
故答案为 4 + 4 + 4 + 1 = 13

首先我们可以分别求出这n个数的前缀和,sum[1],sum[2],……,sum[n];如果当中有n的倍数,则直接输出就好了。

否则sum[1]%n,sum[2]%n,……,sum[n]%n,这n个数必定在区间[1,n-1]之间,这就相当于有n个物品和n-1个抽屉,根据第一抽屉原理可得,必定存在i,j,假设i<j,使得sum[i]%n=sum[j]%n,则(sum[j]-sum[i])%n=0。输出答案只要出j-i,和a[i+1],a[i+2]……a[j]就可以了。

代码:

#include<iostream>
using namespace std;
typedef long long ll;
ll n,a[],sum[],pos[];
//pos[i]记录sum[i]%n是否出现过,如果以出现,则标记为出现的初始位置
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
sum[i]=sum[i-]+a[i];
}
for(int i=;i<=n;i++){
if(sum[i]%n==){
cout<<i<<endl;
for(int j=;j<=i;j++)cout<<a[j]<<endl;
break;
}
if(pos[sum[i]%n]){
cout<<i-pos[sum[i]%n]<<endl;
for(int j=pos[sum[i]%n]+;j<=i;j++)cout<<a[j]<<endl;
break;
}
pos[sum[i]%n]=i;
}
return ;
}

poj 2356 (抽屉原理)的更多相关文章

  1. poj 2356 抽屉原理

    基本原理: n+1个鸽子放到n个笼子里,至少有一个笼子里有两只及其以上的鸽子.若有n个笼子,kn+1个鸽子,至少有一个笼子里面有k+1个鸽子: 题意:给定N个数,挑出一些数,他们和和是n的整数倍: 分 ...

  2. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  3. POJ 2356 Find a multiple 抽屉原理

    从POJ 2356来体会抽屉原理的妙用= =! 题意: 给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n: 先输出一个数,代表有多少个数的和,然后再输出这些数: 题解: 首 ...

  4. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  5. Find a multiple POJ - 2356 (抽屉原理)

    抽屉原理: 形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2. ...

  6. POJ 2356 && POJ 3370 鸽巢原理

    POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...

  7. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  8. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6631   Accepted: 2448 ...

  9. Find a multiple POJ - 2356 【鸽巢原理应用】

    Problem DescriptionThe input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). E ...

随机推荐

  1. Programming好文解读系列(—)——代码整洁之道

    注:初入职场,作为一个程序员,要融入项目组的编程风格,渐渐地觉得系统地研究下如何写出整洁而高效的代码还是很有必要的.与在学校时写代码的情况不同,实现某个功能是不难的,需要下功夫的地方在于如何做一些防御 ...

  2. Kafka-Flume-elasticsearch

    a1.sources = kafkaSource a1.channels = memoryChannel a1.sinks = elasticsearch a1.sources.kafkaSource ...

  3. linux上如何让other用户访问没有other权限的目录

    目前遇到一个问题,一个other用户要访问一个目录,他需要在这个目录下创建文件,因此这个目录需要一个写权限,于是就给了这个目录777的权限,这样这个权限有点太大了,很容易出现安全问题,那我们应该怎么办 ...

  4. vs code配置

    新版的用户设置不是代码, https://blog.csdn.net/zhaojia92/article/details/53862840 https://www.cnblogs.com/why-no ...

  5. LODOP中预览界面查看打印机的可打区域具体值

    LODOP在打印预览的时候,如果选择的打印机是真实打印机,会发现可能会有虚线,不同打印机虚线的位置不同,这个虚线是打印机的可打区域,Lodop无法控制. 可打区域,顾名思义,就是打印机可以打印的区域, ...

  6. MySQL 5.7 关闭严格模式

    If your app was written for older versions of MySQL and is not compatible with strict SQL mode in My ...

  7. poj-1236(强连通分量)

    题意:给你n个点,每个点可能有指向其他点的单向边,代表这个点可以把软件传给他指向的点,然后解决两个问题, 1.问你最少需要给几个点,才能使所有点都能拿到软件: 2.问你还需要增加几条单向边,才能使任意 ...

  8. sed 收集

    #删除倒数第二行的最后的逗号 一条命令 sed ':1;$b;N;/InnoDB/!b1;s/,\n)/\n)/'

  9. ajax提交 返回中文乱码问题

    接口返回数据相关 使用@ResponseBody后返回NUll 说明:刚把后台运行起来,兴高采烈的测试接口数据,结果无论如何都是返回null, 最终通过各种百度,发现原来是没有引入关键的Jar包. 解 ...

  10. BZOJ 1497 最大获利

    最大权闭合子图 对于这个题,可以抽象成一个图论模型,如果我们把用户与其要求建立的中转站连边,获得的利益看成正权值,付出的代价看成负权值,我们可以发现,选取一个用户的时候,就相当于选取了一个闭合子图. ...