有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去做的,正如快速矩阵幂最终会计算出答案一样,我们也最终会在这些不明意义的事情中实现目标。

题意:有 bb 个格子,每个格子有 nn 个数字,各个格子里面的数字都是相同的. 求从 bb 个格子中各取一个数字, 构成一个 bb 位数, 使得这个 bb 位数模 xx 为 kk 的方案数(同一格子内相同的数字算不同方案)

由于每个格子的数都是0-9的,我们首先可以想到用num存所有数字的数量。

一个简单的思想是dp每一位数字的余数,dp[i][j]表示遍历到i的时候有余数j的可能性数量。

写出状态转移方程 dp[i][j * 10 + k] += dp[i - 1][j] * num[k]

但是i的数量大到1e9,显然是不可能的,事实上我们可以考虑用快速矩阵幂来优化,

用一个大小为x * x的矩阵来表示从一个余数到另一个余数的可能情况直接上快速矩阵幂即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = 5e4 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,B,K,X;
int a[maxm];
int num[];
struct Mat{
LL a[maxn][maxn];
void init(){
Mem(a,);
}
};
Mat operator *(Mat a,Mat b){
Mat ans; ans.init();
for(int i = ; i < X; i ++){
for(int j = ; j < X; j ++){
for(int k = ; k < X; k ++){
ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
}
}
}
return ans;
}
int main()
{
scanf("%d%d%d%d",&N,&B,&K,&X);
For(i, , N){
scanf("%d", &a[i]);
a[i] %= X;
num[a[i]]++;
}
Mat base,ans; base.init(); ans.init();
ans.a[][] = ;
for(int i = ; i < X; i ++){
for(int j = ; j < ; j ++){
int to = (i * + j) % X;
base.a[i][to] += num[j];
}
}
while(B){
if(B & ) ans = ans * base;
base = base * base;
B >>= ;
}
Prl(ans.a[][K]);
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces621E 快速矩阵幂优化dp的更多相关文章

  1. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  2. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. Java大数——快速矩阵幂

    Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...

  5. HDU - 6395 Sequence (分块+快速矩阵幂)

    给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...

  6. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  7. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  8. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  9. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

随机推荐

  1. mysql 集群方案

    试试基于Galera的MySQL高可用集群  mha  mgr

  2. Educational Codeforces Round 61 (Rated for Div. 2)

    A. Regular Bracket Sequence 题意:给出四种括号的数量 ((  )) ()  )( 问是否可以组成合法的序列(只能排序不能插在另外一个的中间) 思路: 条件一:一个或 n个) ...

  3. 洛谷P1119灾后重建

    题目 做一个替我们首先要明确一下数据范围,n<=200,说明n^3的算法是可以过得,而且这个题很明显是一个图论题, 所以我们很容易想到这个题可以用folyd, 但是我在做这个题的时候因为没有深刻 ...

  4. MT【260】单调函数

    设$f(x)$是定义在$(0,+\infty)$上的单调函数,且对定义域内的任意实数$x$,都有$f(f(x)-\log_2 x)=3$, 求$f(x)-f^{'}(x)=2$的解所在的区间.____ ...

  5. 【HDU - 4345 】Permutation(DP)

    BUPT2017 wintertraining(15) #8F 题意 1到n的排列,经过几次置换(也是一个排列)回到原来的排列,就是循环了. 现在给n(<=1000),求循环周期的所有可能数. ...

  6. 【转】STM32擦除内部FLASH时间过长导致IWDG复位分析

    @20119-01-29 [小记] STM32擦除内部FLASH时间过长导致IWDG复位分析

  7. chattr命令详解

    [root@localhost ~]# usermod -L yan[root@localhost ~]# passwd -S yanyan LK 2016-07-11 0 99999 7 -1 (密 ...

  8. Nginx优化文件编写

    server_tokens off; #并不会让nginx执行的速度更快,关闭它可隐藏错误页面中的nginx版本号charset utf-8,gbk; #字符#sendfile on;#tcp_nop ...

  9. luogu3811 乘法逆元

    逆元定义:若a*x=1(mod p),(a,p互质),则x为a mod p意义下的逆元 做法见https://www.luogu.org/blog/zjp-shadow/cheng-fa-ni-yua ...

  10. [JLOI2014]聪明的燕姿(搜索)

    城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...