matlab : Nelder mead simplex 单纯形直接搜索算法;
function [ param ] = NeldSearch( param )
%NERDSEARCH 此处显示有关此函数的摘要
% nelder mead simplex 单纯形直接搜索算法;
%param r,g,b 初始三角形顶点;
%%
initPts = [param.b;param.g;param.w];
if(sum(max(initPts) - min(initPts)) < 1e-5)
param.solve = mean(initPts);
return;
end
if( ~isfield(param,'b') || ~isfield(param,'g') || ~isfield(param,'w') )
disp('输入参数不正确');
return;
end %先排序;
fvals = [func(param.b) func(param.g) func(param.w)];
[newSort,Index]= sort(fvals); %默认升序;
%确定b,g,w;
param.b = initPts(Index(1),:);
param.g = initPts(Index(2),:);
param.w = initPts(Index(3),:); param.m = (param.b + param.g)/2;
param.r = 2 * param.m - param.w; if( func(param.r) < func(param.g) )
param = CaseI(param);
else
param = CaseII(param);
end
param = NeldSearch(param); %递归;
disp('--END--');
end function param = CaseI(param)
if(func(param.b) < func(param.r) )
param.w = param.r;
else
param.e = 2 * param.r - param.m;
if(func(param.e) <func(param.b))
param.w = param.e;
else
param.w = param.r;
end
end
end function param = CaseII(param)
if( func(param.r) < func(param.w) )
param.w = param.r;
end
param.c = (param.w + param.m)/2;
if( func(param.c) < func(param.w) )
param.w = param.c;
else
param.s = (param.b + param.w)/2;
param.w = param.s;
param.g = param.m;
end
end function f = func(point)
x= point(1);
y= point(2);
f = x * x - 4 * x + y * y - y - x * y;
end
Nelder mead simplex为单纯形直接搜索算法,可以对无约束多元函数进行寻优,不过该方法找到的解为局部最优解,优点在于能够对无导多元函数进行
优化处理;
matlab : Nelder mead simplex 单纯形直接搜索算法;的更多相关文章
- 线性规划(Simplex单纯形)与对偶问题
线性规划 首先一般所有的线性规划问题我们都可以转换成如下标准型: 但是我们可以发现上面都是不等式,而我们计算中更希望是等式,所以我们引入这个新的概念:松弛型: 很显然我们最后要求是所有的约束左边的变量 ...
- c#编程模仿的1stopt界面
* Levenberg-Marquardt法 (LM)+ 通用全局优化算法(Universal Global Optimization - UGO) * Quasi-Newton法 (BFGS)+ 通 ...
- 单纯形方法(Simplex Method)
最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下.单纯形方法是求解线性规划问题的一种基本方法. 线性规划就是在一系列 ...
- 最优化理论-Simplex线性规划
Sorry,各位,现在这里面啥也没,之所以开这篇文章,是防止以后用得到:现在研究这些,总感觉有些不合适,本人还不到那个层次:如果之后有机会继续研究simplex-线性规划问题,再回来参考下面的链接进 ...
- Gym101158 J 三分 or 模拟退火 Cover the Polygon with Your Disk
目录 Gym101158 J: 求圆与给定凸多边形最大面积交 模拟退火 三分套三分 模拟退火套路 @ Gym101158 J: 求圆与给定凸多边形最大面积交 传送门:点我点我 求 $10 $ 个点组成 ...
- PP: UMAP: uniform manifold approximation and projection for dimension reduction
From Tutte institute for mathematics and computing Problem: dimension reduction Theoretical foundati ...
- 单纯形算法 matlab
%单纯形 %目标函数标准化 % min x1-3x2+2x3 %输入参量 N=[3 -1 2;-2 4 0;-4 3 8]; B=eye(3); A=[N B]; cn=[1;-3;2]; cb=ze ...
- 人工水母搜索算法—matlab代码
clc clear foj = @ Sphere; Lb = -100; % 搜索空间下界 Ub = 100; % 搜索空间上界 N_iter = 1000; % 最大迭代次数 n_pop = 50; ...
- 非线性规划的Matlab 解法
编写M 文件fun1.m 定义目标函数 function f=fun1(x); % 定义目标函数 f=sum(x.^)+; % .^2是矩阵中的每个元素都求平方.^2是求矩阵的平方或两个相同的矩阵相乘 ...
随机推荐
- 6.docker的私用镜像仓库registry
docker方式启动镜像仓库 / # cat /etc/docker/registry/config.yml version: 0.1 log: fields: service: registry s ...
- codeforces379C
New Year Ratings Change CodeForces - 379C One very well-known internet resource site (let's call it ...
- Spring MVC 使用介绍(三)—— Controller接口控制器
一.概述 Controller接口类图如下,其中,BaseCommandController已从Spring 4移除 基于继承Controller接口的方式已经不推荐使用,仅供学习参考 二.基于Con ...
- Tomcat服务的安装与配置
介绍 百度百科 Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun 和其他一些公司及个人共同开 ...
- Marriage Match IV HDU - 3416(最短路 + 最大流)
题意: 求有多少条最短路 解析: 正着求一遍最短路 得dis1 反着求一遍得 dis2 然后 遍历所有的边 如果 dis1[u] + dis2[v] + w == dis1[B], 则说明这是一 ...
- C#版本和.NET版本以及VS版本的对应关系
C#版本和.NET版本以及VS版本的对应关系 版本 .NET Framework版本 Visual Studio版本 发布日期 特性 C# 1.0 .NET Framework 1.0 Visual ...
- 【BZOJ1023】仙人掌图(仙人掌,动态规划)
[BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. ...
- 「SCOI2015」小凸玩矩阵 解题报告
「SCOI2015」小凸玩矩阵 我好沙茶啊 把点当边连接行和列,在外面二分答案跑图的匹配就行了 我最开始二分方向搞反了,样例没过. 脑袋一抽,这绝壁要费用流,连忙打了个KM 然后wa了,一想这个不是完 ...
- 「SDOI2014」数数 解题报告
「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0 ...
- NOIP2011Mayan游戏(模拟)
Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个77 行\times 5×5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指 ...