ML.NET 示例:推荐之矩阵分解
写在前面
准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。
如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn
电影推荐 - 矩阵分解示例
| ML.NET 版本 | API 类型 | 状态 | 应用程序类型 | 数据类型 | 场景 | 机器学习任务 | 算法 |
|---|---|---|---|---|---|---|---|
| v0.7 | 动态 API | 最新版本 | 控制台应用程序 | .csv 文件 | 推荐 | 矩阵分解 | MatrixFactorizationTrainer |
在这个示例中,您可以看到如何使用ML.NET来构建电影推荐引擎。
问题
在本教程中,我们将使用MovieLens数据集,其中包含电影评分,标题,流派等信息。在构建我们的电影推荐引擎的方法方面,我们将使用分解机,它使用协同过滤方法。
“协同过滤”是在一个基本假设的情况下运作的,即如果某人A在一个问题上与某人B具有相同的意见,则在另一个问题上,相对其他随机选择的人,A更倾向于B的观点。
使用ML.NET,我们支持以下三种推荐场景,根据您的场景,您可以从下面的列表中选择三种场景之一。
| 场景 | 算法 | 示例链接 |
|---|---|---|
| 你有用户购买行为中的用户Id、产品Id和评分。 | 矩阵分解 | 当前示例 |
| 你仅有用户购买行为中用户Id和产品Id,但是没有评分。 这在来自在线商店的数据集中很常见,您可能只能访问客户的购买历史记录。 有了这种类型的推荐,你可以建立一个推荐引擎用来推荐经常购买的物品。 | One Class 矩阵分解 | 产品推荐器 |
| 您希望在您的推荐引擎中使用用户Id、产品Id和评分之外的更多属性(特征),例如产品描述,产品价格等。 | 场感知分解机 | 基于分解机的电影推荐器 |
数据集
原始数据来自MovieLens数据集:
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
ML 任务 - 矩阵分解(推荐)
这个示例的ML任务是矩阵分解,它是一个执行协同过滤的有监督的机器学习任务。
解决方案
要解决此问题,您需要在现有训练数据上建立和训练ML模型,评估其有多好(分析获得的指标),最后您可以使用/测试模型来预测给定输入数据变量的需求。

1. 建立模型
建立模型包括:
定义映射到数据集的数据模式,并使用DataReader读取(
recommended-ratings-train.csv和recommended-ratings-test.csv)矩阵分解需要对userId,movieId这两个特征进行编码
然后MatrixFactorizationTrainer将这两个已编码特征(userId, movieId)作为输入
下面是用于建立模型的代码:
var mlcontext = new MLContext();
var reader = mlcontext.Data.TextReader(new TextLoader.Arguments()
{
Separator = ",",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("userId", DataKind.R4, 0),
new TextLoader.Column("movieId", DataKind.R4, 1),
new TextLoader.Column("Label", DataKind.R4, 2)
}
});
IDataView trainingDataView = reader.Read(new MultiFileSource(TrainingDataLocation));
var pipeline = mlcontext.Transforms.Categorical.MapValueToKey("userId", "userIdEncoded")
.Append(mlcontext.Transforms.Categorical.MapValueToKey("movieId", "movieIdEncoded")
.Append(new MatrixFactorizationTrainer(mlcontext, "Label","userIdEncoded", "movieIdEncoded")));
2. 训练模型
训练模型是在训练数据(具有已知电影和用户评分)上运行所选算法以调整模型参数的过程。 它是在评估器对象的Fit()方法中实现的。
要执行训练,您需要调用Fit()方法访问在DataView对象中提供的训练数据集(recommendation-ratings-train.csv文件)。
var model = pipeline.Fit(trainingDataView);
请注意,ML.NET使用延迟加载方法处理数据,所以实际上只有调用.Fit()方法时才真正在内存中加载数据。
3. 评估模型
我们需要这一步来总结我们的模型对新数据的准确性。 为此,上一步中的模型针对未在训练中使用的另一个数据集运行(recommendation-ratings-test.csv)。
Evaluate() 比较测试数据集的预测值并生成各种指标,例如准确性,您可以进行研究。
Console.WriteLine("=============== Evaluating the model ===============");
IDataView testDataView = reader.Read(new MultiFileSource(TestDataLocation));
var prediction = model.Transform(testDataView);
var metrics = mlcontext.Regression.Evaluate(prediction, label: "Label", score: "Score");
4. 使用模型
训练模型后,您可以使用Predict()API来预测特定电影/用户组合的评分。
var predictionengine = model.MakePredictionFunction<MovieRating, MovieRatingPrediction>(mlcontext);
var movieratingprediction = predictionengine.Predict(
new MovieRating()
{
//Example rating prediction for userId = 6, movieId = 10 (GoldenEye)
userId = predictionuserId,
movieId = predictionmovieId
}
);
Console.WriteLine("For userId:" + predictionuserId + " movie rating prediction (1 - 5 stars) for movie:" +
movieService.Get(predictionmovieId).movieTitle + " is:" + Math.Round(movieratingprediction.Score,1));
请注意,这是用矩阵分解进行电影推荐的一种方法。还有其他的推荐方案,我们也将为其建立示例。
ML.NET 示例:推荐之矩阵分解的更多相关文章
- 推荐系统实践 0x0b 矩阵分解
前言 推荐系统实践那本书基本上就更新到上一篇了,之后的内容会把各个算法拿来当专题进行讲解.在这一篇,我们将会介绍矩阵分解这一方法.一般来说,协同过滤算法(基于用户.基于物品)会有一个比较严重的问题,那 ...
- ML.NET 示例:推荐之One Class 矩阵分解
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- ML.NET 示例:推荐之场感知分解机
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...
- 用Spark学习矩阵分解推荐算法
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...
- 简单的基于矩阵分解的推荐算法-PMF, NMF
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...
- 推荐算法之用矩阵分解做协调过滤——LFM模型
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
随机推荐
- <自动化测试方案_1>第一章、为什么要做自动化测试?(Why)
第一章.为什么要做自动化测试?(Why) 测试的产品分为:桌面程序(C/S).web应用(B/S) 我们的产品是B/S (一)迭代中省去人力测试非新增功能: 在项目中由于测试时间的限制,测试中只能实现 ...
- <自动化测试方案书>方案书目录排版
自动化测试方案书 一.介绍 QQ交流群:585499566 这篇是一个系列,用来给需要做自动化测试方案的人做个参考,文章的内容是我收集网上和自己工作经验所得,希望能够给你们有所帮助 背景:因为工作需要 ...
- [Python][小知识][NO.1] Python字符串前 加 u、r、b 的含义
1.字符串前加 u 例:u"我是含有中文字符组成的字符串." 作用:后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出 ...
- 通过UNIX域套接字传递描述符的应用
传送文件描述符是高并发网络服务编程的一种常见实现方式.Nebula 高性能通用网络框架即采用了UNIX域套接字传递文件描述符设计和实现.本文详细说明一下传送文件描述符的应用. 1. TCP服务器程 ...
- spring学习总结——介绍
介绍:以下博客的内容都是依据<spring实战4>这本书.spring4.0 来总结. 一.spring作用 Spring可以做很多事情,它为企业级开发提供给了丰富的功能,但是这些功能的底 ...
- (python)数据结构---集合
一.描述 set翻译为集合 set是可变的.无序的.不可重复的 set的元素要求可哈西(不可变的数据类型可哈西,可变的数据类型不可哈希) set是无序的,因此不可以索引,也不可以修改 线型结构的查询时 ...
- SQL Server的优化器会缓存标量子查询结果集吗
在这篇博客"ORACLE当中自定义函数性优化浅析"中,我们介绍了通过标量子查询缓存来优化函数性能: 标量子查询缓存(scalar subquery caching)会通过缓存结果减 ...
- c/c++ 链栈
c/c++ 链栈 链栈 下面的代码实现了以下功能 函数 功能描述 push 压入 pop 弹出 show_list 打印 clear 释放所有内存空间 destroy 释放所有内存空间 nodesta ...
- Linux下键盘值 对应input_evnet的code值。
最近做了一个linux下面的模拟鼠标和键盘的app,但不是很清楚字符对应的键值:查找内核源码,在kernel/include/uapi/linux/input.h文件中找到: 下面给出普通键盘上面对应 ...
- 解决“Eclipse中启动Tomcat后,http://localhost:8080/无法访问”的问题
这个问题是eclipse造成的,我们可以修改配置来实现通过eclipse启动tomcat可以访问http://localhost:8080 打开Server试图(打开前不要启动tomcat),双击其中 ...