You are given an integer array of length nn.

You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to [x,x+1,…,x+k−1][x,x+1,…,x+k−1] for some value xx and length kk.

Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array [5,3,1,2,4][5,3,1,2,4] the following arrays are subsequences: [3][3], [5,3,1,2,4][5,3,1,2,4], [5,1,4][5,1,4], but the array [1,3][1,3] is not.

Input

The first line of the input containing integer number nn (1≤n≤2⋅1051≤n≤2⋅105) — the length of the array. The second line of the input containing nn integer numbers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109) — the array itself.

Output

On the first line print kk — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive integers.

On the second line print the sequence of the indices of the any maximum length subsequence of the given array that forms an increasing sequence of consecutive integers.

Examples

Input
7
3 3 4 7 5 6 8
Output
4
2 3 5 6
Input
6
1 3 5 2 4 6
Output
2
1 4
Input
4
10 9 8 7
Output
1
1
Input
9
6 7 8 3 4 5 9 10 11
Output
6
1 2 3 7 8 9

Note

All valid answers for the first example (as sequences of indices):

  • [1,3,5,6][1,3,5,6]
  • [2,3,5,6][2,3,5,6]

All valid answers for the second example:

  • [1,4][1,4]
  • [2,5][2,5]
  • [3,6][3,6]

All valid answers for the third example:

  • [1][1]
  • [2][2]
  • [3][3]
  • [4][4]

All valid answers for the fourth example:

  • [1,2,3,7,8,9]

题意:

给定一个含有N个整数的数组,求出最大的长度len,使之数组中可以不连续的子数组时严格递增1的数组,并要求输出这个子数组的每一个元素的下标。

思路:

类似最长上升子序列的问题,但这里的要求是每一次必须递增1,即数值是连续+1 的。

那么我们可以考虑,对于访问到的每一个a[i]时,以a[i]为最后一个数值的子数组的长度dp[a[i]] = dp[a[i]-1] + 1 (即转移方程)

因为a[i]的范围是1~1e9,所以dp不能开数组,而要开map<int,int> dp;

找出子数组的每一个下标。

我用的是一个比较简单的方法。

因为每一次连续递增1的性质,我们只需记录最大的ans值的dp[a[i]] 的下标值i,

那么这个递增的子数组的初始值就是a[i]-ans+1

然后我们O(N) 扫一遍数组,以此输出数组中的那些连续的数值的下标即可。

细节见ACODE:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
map<int,int> m;
map<int,int> pre;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
}
int ans=;
int id;
repd(i,,n)
{
m[a[i]]=m[a[i]-]+;
if(m[a[i]]>ans)
{
ans = m[a[i]];
id=i;
}
ans = max(ans,m[a[i]]);
}
int num=a[id]-ans+;
std::vector<int> v;
int cnt=;
repd(i,,n)
{
if(a[i]==num)
{
v.pb(i);
num++;
cnt++;
}
}
cout<<max(cnt,ans)<<endl;
for(auto x:v)
{
cout<<x<<" ";
}
cout<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Consecutive Subsequence CodeForces - 977F (map优化DP)·的更多相关文章

  1. Consecutive Subsequence CodeForces - 977F(dp)

    Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...

  2. Codeforces 977F - Consecutive Subsequence - [map优化DP]

    题目链接:http://codeforces.com/problemset/problem/977/F 题意: 给定一个长度为 $n$ 的整数序列 $a[1 \sim n]$,要求你找到一个它最长的一 ...

  3. CodeForces - 512B Fox And Jumping[map优化dp]

    B. Fox And Jumping time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. BZOJ 3357 [Usaco2004]等差数列:map优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3357 题意: 给你n个数a[i],让你找出一个最长的是等差数列的子序列. 题解: 表示状态 ...

  5. hdu4028 The time of a day[map优化dp]

    The time of a day Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others ...

  6. D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)

    D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  9. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

随机推荐

  1. MySQL Host is blocked because of many connection errors 解决方法

    应用日志提示错误:create connection error, url: jdbc:mysql://10.45.236.235:3306/db_wang?useUnicode=true&c ...

  2. c/c++ 智能指针 weak_ptr 使用

    智能指针 weak_ptr 使用 weak_ptr用途: 1,解决空悬指针问题 2,解决循环引用问题 weak_ptr特点:没有*操作和->操作 weak_ptr是不控制所指对象生存周期的智能指 ...

  3. c/c++ 通用的(泛型)算法 generic algorithm 总览

    通用的(泛型)算法 generic algorithm 总览 特性: 1,标准库的顺序容器定义了很少的操作,比如添加,删除等. 2,问题:其实还有很多操作,比如排序,查找特定的元素,替换或删除一个特定 ...

  4. strlen strcat strcpy strcmp 自己实现

    strlen strcat strcpy strcmp 自己实现 strlen include <stdio.h> #include <string.h> #include & ...

  5. Windows Server 2016-Active Directory域服务端口汇总

    本章为大家简单整理一下有关Windows server Active Directory和Active Directory域服务(AD DS)组件的端口要求.生产环境中我们在做网络调整.防火墙或者开关 ...

  6. centOS7docker安装oracle

    1.拉取oracle 11g 的镜像: 用root登陆服务器,输入下面的命令,拉取oracle 11g的镜像,有点大,6.8G多: docker pull registry.cn-hangzhou.a ...

  7. jQuery -- 光阴似箭(五):AJAX 方法

    jQuery -- 知识点回顾篇(五):AJAX 方法 1. $.ajax 方法:用于执行 AJAX(异步 HTTP)请求. <!DOCTYPE html> <html> &l ...

  8. Java中使用elasticsearch搜索引擎实现简单查询、修改等操作-已在项目中实际应用

    以下的操作环境为:jdk:1.8:elasticsearch:5.2.0 maven架包下载坐标为: <dependency> <groupId>org.elasticsear ...

  9. 设计模式のIOC(控制反转)

    一.什么是Ioc IoC(Inverse of Control)的字面意思是控制反转,它包括两个内容: 控制.反转 可以假设这样一个场景:火车运货,不同类型的车厢运送不同类型的货物,板车运送圆木,罐车 ...

  10. centos7下安装docker(17.5docker监控的总结对比)

    到现在为止,我已经学习了docker自带的监控方案:ps/ls/top/stats,以及sysdig,weave scope,cadvisor,prometheus多种监控工具,现在做个总结和比较 部 ...