You are given an integer array of length nn.

You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to [x,x+1,…,x+k−1][x,x+1,…,x+k−1] for some value xx and length kk.

Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array [5,3,1,2,4][5,3,1,2,4] the following arrays are subsequences: [3][3], [5,3,1,2,4][5,3,1,2,4], [5,1,4][5,1,4], but the array [1,3][1,3] is not.

Input

The first line of the input containing integer number nn (1≤n≤2⋅1051≤n≤2⋅105) — the length of the array. The second line of the input containing nn integer numbers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109) — the array itself.

Output

On the first line print kk — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive integers.

On the second line print the sequence of the indices of the any maximum length subsequence of the given array that forms an increasing sequence of consecutive integers.

Examples

Input
7
3 3 4 7 5 6 8
Output
4
2 3 5 6
Input
6
1 3 5 2 4 6
Output
2
1 4
Input
4
10 9 8 7
Output
1
1
Input
9
6 7 8 3 4 5 9 10 11
Output
6
1 2 3 7 8 9

Note

All valid answers for the first example (as sequences of indices):

  • [1,3,5,6][1,3,5,6]
  • [2,3,5,6][2,3,5,6]

All valid answers for the second example:

  • [1,4][1,4]
  • [2,5][2,5]
  • [3,6][3,6]

All valid answers for the third example:

  • [1][1]
  • [2][2]
  • [3][3]
  • [4][4]

All valid answers for the fourth example:

  • [1,2,3,7,8,9]

题意:

给定一个含有N个整数的数组,求出最大的长度len,使之数组中可以不连续的子数组时严格递增1的数组,并要求输出这个子数组的每一个元素的下标。

思路:

类似最长上升子序列的问题,但这里的要求是每一次必须递增1,即数值是连续+1 的。

那么我们可以考虑,对于访问到的每一个a[i]时,以a[i]为最后一个数值的子数组的长度dp[a[i]] = dp[a[i]-1] + 1 (即转移方程)

因为a[i]的范围是1~1e9,所以dp不能开数组,而要开map<int,int> dp;

找出子数组的每一个下标。

我用的是一个比较简单的方法。

因为每一次连续递增1的性质,我们只需记录最大的ans值的dp[a[i]] 的下标值i,

那么这个递增的子数组的初始值就是a[i]-ans+1

然后我们O(N) 扫一遍数组,以此输出数组中的那些连续的数值的下标即可。

细节见ACODE:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
map<int,int> m;
map<int,int> pre;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
}
int ans=;
int id;
repd(i,,n)
{
m[a[i]]=m[a[i]-]+;
if(m[a[i]]>ans)
{
ans = m[a[i]];
id=i;
}
ans = max(ans,m[a[i]]);
}
int num=a[id]-ans+;
std::vector<int> v;
int cnt=;
repd(i,,n)
{
if(a[i]==num)
{
v.pb(i);
num++;
cnt++;
}
}
cout<<max(cnt,ans)<<endl;
for(auto x:v)
{
cout<<x<<" ";
}
cout<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}

Consecutive Subsequence CodeForces - 977F (map优化DP)·的更多相关文章

  1. Consecutive Subsequence CodeForces - 977F(dp)

    Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...

  2. Codeforces 977F - Consecutive Subsequence - [map优化DP]

    题目链接:http://codeforces.com/problemset/problem/977/F 题意: 给定一个长度为 $n$ 的整数序列 $a[1 \sim n]$,要求你找到一个它最长的一 ...

  3. CodeForces - 512B Fox And Jumping[map优化dp]

    B. Fox And Jumping time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. BZOJ 3357 [Usaco2004]等差数列:map优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3357 题意: 给你n个数a[i],让你找出一个最长的是等差数列的子序列. 题解: 表示状态 ...

  5. hdu4028 The time of a day[map优化dp]

    The time of a day Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others ...

  6. D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)

    D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  9. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

随机推荐

  1. C#计算时间差 TimeSpan

    TimeSpan的相关属性 Add:与另一个TimeSpan值相加. Days:返回用天数计算的TimeSpan值. Duration:获取TimeSpan的绝对值. Hours:返回用小时计算的Ti ...

  2. c指针类型的作用

    指针类型的作用 任何类型的指针占用的空间大小都是相同的(32位CPU是4字节:64位CPU是8字节) 既然任何类型的指针占用的空间大小都是相同的,为什么指针还需要类型呢?指针只是指向了一个内存地址,但 ...

  3. Vue学习之路3-浅析Vue-cli搭建项目后的目录结构

    1.前言 Vue并不限制你的代码结构.但是,它规定了一些需要遵守的规则:1.应用层级的状态应该集中到单个store对象中.2.提交mutation是更改状态的唯一方法,并且这个过程是同步的.3.异步逻 ...

  4. ID 生成器

    using System; using System.Diagnostics; using System.Net; using System.Net.Sockets; using System.Thr ...

  5. Linux发展史-简简简易版

    "蛋-人-人-人" unix诞生 unix 贝尔实验室 人-谭教授 谭宁邦 minix mini unix 主要用于教学 人-斯托曼 stallman 我要开发出一个系统:自由 开 ...

  6. 缓存数据库Memcache

    为什么用缓存数据库 MySQL:将数据存储在磁盘上,数据写入读取相对较慢 Memcached:将数据存在内存中的数据库,数据读写都快,但是数据容易丢失 数据存储,数据仓库选择MySQL这种磁盘的数据库 ...

  7. UVA1374-Power Calculus(迭代加深搜索)

    Problem UVA1374-Power Calculus Accept:323  Submit:2083 Time Limit: 3000 mSec  Problem Description  I ...

  8. Android 6.0以后的版本报错:open failed: EACCES (Permission denied)

    Android 6.0以后的版本报错:open failed: EACCES (Permission denied) 在开发项目中,遇见要进行文件操作,遇见Caused by: android.sys ...

  9. 转://Oracle 单引号转义

    在ORACLE中,单引号有两个作用: 1:字符串是由单引号引用 2:转义. 单引号的使用是就近配对,即就近原则.而在单引号充当转义角色时相对不好理解 1.从第二个单引号开始被视为转义符,如果第二个单引 ...

  10. jenkins使用5----gi服务器搭建连接

    ♦安装git ♦服务器创建git用户 [root@localhost home]# id git id: git:无此用户 [root@localhost home]# useradd git [ro ...