Volterra方程的不动点的更多相关文章

  1. 如何理解logistic函数?

    作者:煎挠橙链接:https://www.zhihu.com/question/36714044/answer/78680948来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  2. Picard 法求方程根

    要点: 首先对于任何方程 :f(x)=0 ,可以转换成 f(x)+x-x => f(x)+x=x; 取g(x)=f(x)+x;  那么 新方程g(x)=x 的解即是 f(x)=0的解,即g(x) ...

  3. MATLAB用二分法、不动点迭代法及Newton迭代(切线)法求非线性方程的根

    MATLAB用二分法.不动点迭代法及Newton迭代(切线)法求非线性方程的根 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验原理 二.实验步骤 ...

  4. 【统计学习】SVM之超平面方程来源

    摘要 本文主要说明SVM中用到的超平面方程是怎么来的,以及各个符号的物理意义,怎么算空间上某点到该平面的距离. 正文 < 统计学习方法>一书给出如下说明: 首先说明我对超平面的理解: 在三 ...

  5. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  6. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  7. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  8. SPSS数据分析—广义估计方程

    广义线性模型虽然很大程度上拓展了线性模型的应用范围,但是其还是有一些限制条件的,比如因变量要求独立,如果碰到重复测 量数据这种因变量不独立的情况,广义线性模型就不再适用了,此时我们需要使用的是广义估计 ...

  9. vijos1910解方程

      描述 已知多项式方程: a0+a1x+a2x2+...+anxn=0a0+a1x+a2x2+...+anxn=0 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 格式 输入格式 输 ...

随机推荐

  1. Python数据类型转换函数

    数据类型转换函数 函 数 作 用 int(x) 将 x 转换成整数类型 float(x) 将 x 转换成浮点数类型 complex(real[,imag]) 创建一个复数 str(x) 将 x 转换为 ...

  2. UGUI组件之快速消息提示(飘字)

    效果预览 使用情景 几乎每一个游戏都会有这种飘字提示,实现起来并不复杂, 我把它做了一个组件. 开箱即可使用,无需二次开发,如果效果不满意,开放源码,方便进行调优. 组件源码 核心代码 每次将飘字的请 ...

  3. JAVA API的下载和中文查看API

    一.JAVA API的下载 1.1 JAVA由SUN公司开发,2006年SUN公司宣布将Java技术作为免费软件对外发布,标志着JAVA的公开免费.2009年,SUN公司被甲骨文公司收购,因此我们现在 ...

  4. Unity Shader 效果(1) :图片流光效果

    很多游戏Logo中可以看到这种流光效果,一般的实现方案就是对带有光条的图片uv根据时间进行移动,然后和原图就行叠加实现,不过实现过程中稍稍有点需要注意的地方.之前考虑过风宇冲的实现方式,但是考虑到sh ...

  5. 力扣算法题—052N皇后问题2

    跟前面的N皇后问题没区别,还更简单 #include "000库函数.h" //使用回溯法 class Solution { public: int totalNQueens(in ...

  6. 【FJWC 2019】 森林

    [FJWC 2019] 森林 样例输入 0 5 1 0 0 2 样例输出 1 2 3 3 我们发现,答案就是直径加上直径上某个点出发,不经过其他直径上的点的最长链.这里的直径可以是任意一条直径. 首先 ...

  7. google colab 使用指南

    重启colab !kill - - 输出ram信息 !cat /proc/meminfo 输出cpu信息 !cat /proc/cpuinfo 更改工作文件夹 一般,当你运行下面的命令: !ls 你会 ...

  8. [matlab] 10.最小覆盖

    clear all; close all; clc; n=100; p=rand(n,2); p1=p(1,:); %取第一行的值 P1点 p2=p(2,:); %取第二行的值 P2点 r=sqrt( ...

  9. 路飞学城-Python开发集训-第4章

    学习心得: 学习笔记: 在python中一个py文件就是一个模块 模块好处: 1.提高可维护性 2.可重用 3.避免函数名和变量名冲突 模块分为三种: 1.内置标准模块(标准库),查看所有自带和第三方 ...

  10. Flask-SQLAlchemy常用操作

    一.SQLAlchemy介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数 ...