题解:

感觉贪心水平有所提高。。

首先比较显然的事情是我们可以枚举最深进行到哪一层

我们会发现,当且仅当该层是最小值才会使用决策,

并且是从该层的左上,走到右下

另外中间步骤就是(好难描述啊)一个单调下降序列,每个会走最多的向右走的步数,然后中间的点只走一次  (这句话应该正常人是无法理解的)

但是处理起来还是比较简单的,我们考虑从上一层到这一层实际上就是有一个多往右走一格,所以维护前缀最小值

代码:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define IL inline
#define rint register ll
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const ll N=2e5;
const ll INF=1e18;
ll a[N],n,f[N],ans=INF;
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;
rep(i,,n+) cin>>a[i];
ll mina=INF;
dep(i,n+,)
{
if (i==n+) f[i]=a[i];
else f[i]=f[i+]+a[i]+mina;
if (mina>=a[i])
{
ans=min(ans,f[i]*+(*i-)*a[i]);
mina=a[i];
}
}
cout<<ans<<endl;
return ;
}

【UOJ244】【UER #7】短路的更多相关文章

  1. 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

    题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...

  2. 【UOJ244】[UER7]短路

    [题目大意] (2n+1)*(2n+1)的矩形,由里到外每一层都有一个相同的值.问从左上走到右小经过的点累和的最小值. [思路] 一眼就是贪心.首先能够想到的是,权值最小的那些边要尽可能夺走,所以必定 ...

  3. UOJ244 【UER #7】短路

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. 【UOJ244】 【UER #7】短路(贪心)

    传送门 uoj Solution 简单题? 考虑一条路径长什么样子,一定是经过某一个字母环的左上角,那么答案就很简单了. 我们记一个前缀最小值,这样子让他一路走下去一定是最优! 然后扫一遍就好了. 代 ...

  5. uoj#244. 【UER #7】短路

    题目 orz myy 这个矩形对称的性质非常优美,所以我们只需要考虑一个\(\frac{1}{4}\)的矩阵,即一个倒三角形 现在我们要求的是从\((1,1)\)到三角形对边上每个点的最短路,不难发现 ...

  6. 【UOJ #244】【UER #7】短路

    http://uoj.ac/contest/35/problem/244 对其他人来说好简单的一道题,我当时却不会做TWT 注定滚粗啊 题解很好的~ #include<cstdio> #i ...

  7. UOJ244 短路 贪心

    正解:贪心 解题报告: 传送门! 贪心真的都是些神仙题,,,以我的脑子可能是不存在自己想出解这种事情了QAQ 然后直接港这道题解法趴,,, 首先因为这个是对称的,所以显然的是可以画一条斜右上的对角线, ...

  8. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  9. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

随机推荐

  1. Kendo ui 入门知识点

    1. Kendo的继承 varPerson= kendo.Class.extend({...}); var person = new person(); var Parent = kendo.Clas ...

  2. 用Go的风格实现素数筛选

    package main import ( "fmt" "time" ) func source(ch chan<- int) { ; i < En ...

  3. linux mysql 定时备份 使用crontab

    第一步:在服务器上配置备份目录代码: mkdir /var/lib/mysqlbackup cd /var/lib/mysqlbackup 第二步:编写备份脚本代码:  vi dbbackup.sh ...

  4. python笔记---需求文件requirements.txt的创建及使用

    /******************************************/ 感谢大家一直以来的关注与支持. 本站迁移至 http://qingkang.me 也欢迎大家继续关注. /** ...

  5. 在Centos7 上安装SVN

    https://blog.csdn.net/crossangles_2017/article/details/78553266 1.安装 使用yum安装非常简单: yum install subver ...

  6. springcloud-4:服务注册(hello-service)

    服务端 请见 http://www.cnblogs.com/huiy/p/8668005.html 客户端: 主启动类 import org.springframework.boot.SpringAp ...

  7. Confluence 6 内存使用和需求和一些问题

    系统备份和恢复 Confluence  的备份和恢复是与数据库中数据量的大小有关.这个操作可能会对 Confluence 的性能产生很多关键性的影响并且大量消耗内存.如果你在 Confluence 的 ...

  8. python使用 HTMLTestRunner.py生成测试报告

    HTMLTestRunner.py python 2版本 下载地址:http://tungwaiyip.info/software/HTMLTestRunner.html 使用时,先建立一个”PyDe ...

  9. 【kafka】celery与kafka的联用问题

    背景:一个小应用,用celery下发任务,任务内容为kafka生产一些数据. 问题:使用confluent_kafka模块时,单独启用kafka可以正常生产消息,但是套上celery后,kafka就无 ...

  10. Python基础之模块与包

    一.模块 1.什么是模块? 一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 2.为何要使用模块? 如果你退出python解释器然后重新进入,那么你之前定义的函 ...